search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Chilean Journal of Agricultural Research
Instituto de Investigaciones Agropecuarias, INIA
ISSN: 0718-5820 EISSN: 0718-5839
Vol. 70, Num. 4, 2010, pp. 604-615

Chilean Journal of Agricultural Research, Vol. 70, No. 4, 2010, pp. 604-615

RESEARCH

Topoclimatic Modeling of Thermopluviometric Variables for the Bío Bío and La Araucanía Regions, Chile

Elaboración de modelos topoclimáticos de variables termopluviométricas para las Regiones del Bío Bío y La Araucanía, Chile.

Diego Díaz M.1*, Luis Morales S.2, Giorgio Castellaro G.2, and Fernando Neira R2.

1Centro Nacional del Medio Ambiente – CENMA, Laboratorio de Modelación e Inventario de Emisiones, Casilla 7880096, Santiago, Chile. *Corresponding author (ddiaz@cenma.cl).
2Universidad de Chile, Facultad de Ciencias Agronómicas, Casilla 1004, Santiago, Chile.

Received: 25 August 2009. Accepted: 08 December 2009.

Code Number: cj10068

ABSTRACT

Climatic mapping in the Bío Bío and La Araucanía Regions of Chile is primarily in analog form (paper) and delineation of contours, making it unsuitable for digital handling by geographic information systems (GIS). Therefore, in this study, topoclimatic models were created and spatially represented to explain the spatial and temporal variation of monthly mean temperature and precipitation, as a function of variability and singularity of the physiographic characteristics of the Bío Bío and La Araucanía Regions. The physiographic factors considered were latitude, longitude, altitude, aspect and distance to coastline. To elaborate equations, data from thermopluviometric stations of the study area were compiled and systematized. These stations were standardized to a common reference system in order to locate them in space and obtain the value of physiographic factors for each station. With this information, the equations were calculated using a stepwise (backward) regression procedure, with a statistical significance of 95%. The regression equations obtained for mean monthly and annual temperature and precipitation were all significant (P ≤ 0.05) and had R2 > 0.7. These equations were applied to the rest of the study area in raster format using a GIS, which yields a spatially continuous cartography. The spatial resolution or pixel size was 90 m, which allows carrying out research at a 1:100000 scale, commonly used at the regional or provincial level.

Key words: Topoclimatic models, mean temperature, mean precipitation, pluviometric cartographic, GIS.

RESUMEN

La cartografía climática existente en las Regiones del Bío Bío y La Araucanía está fundamentalmente en formato analógico (papel) y con trazado de isolíneas, lo que la hace inadecuada para el manejo digital mediante sistemas de información geográficas (SIG). Por ello, en este estudio se elaboraron y representaron espacialmente modelos topoclimáticos que explicaron la variación espacio-temporal de la temperatura y precipitación en su distribución media mensual, en función de la variabilidad y particularidad de la fisiografía de las regiones del Bío Bío y de La Araucanía. Los factores fisiográficos considerados fueron latitud, longitud, altitud, exposición y distancia a la línea de costa. Para la construcción de las ecuaciones se recopilaron y sistematizaron los datos provenientes de estaciones termopluviométricas de la zona en estudio. Estas estaciones fueron estandarizadas a un mismo sistema de referencia, con la finalidad de localizarlas en el espacio y obtener los valores de sus factores fisiográficos. Con esta información se calcularon las ecuaciones mediante un procedimiento de regresión “stepwise”en su forma “backward”, con una significancia estadística del 95%. Las ecuaciones de regresión obtenidas para las temperaturas y precipitaciones medias mensuales estudiadas fueron significativas (P ≤ 0,05) y con coeficientes de determinación que superaron 0,7. Estas ecuaciones fueron representadas espacialmente utilizando SIG de tipo raster. La resolución espacial o tamaño de píxel empleado fue de 90 m, la que permite realizar estudios a una escala aproximada de 1:100000, que es comúnmente utilizada en análisis de carácter regional y/o provincial.

Palabras clave: modelos topoclimáticos, temperaturas medias, precipitaciones medias, cartografía termopluviométrica, SIG.

INTRODUCTION

Climate, defined as the mean state of the atmosphere in a determined place, is a variable that affects, models and conditions biological, physical and chemical processes that occur in nature (Hufty, 1984). The elements influenced by climate are geography, soil characteristics, vegetation, and ultimately the use and occupation of a determined territory. Because of this, the climatic variable is a conditioning factor in the planning of human activities (Romero and Martínez, 2001). If we consider the importance of climate for the processes that occur in nature and the possible variations of climate owing to physiographic factors, it is necessary to have base climatic information to undertake any study about a determined territory.

This is relevant for Chile, where the physiographic factors are highly variable, with a latitudinal range of approximately 38º (Di Castri and Hajek, 1976), altitudes that range from 0 to 6000 m.a.s.l. and a marked maritime influence (Errázuriz et al., 1994). The study of climatic variation attributable to physiographic factors has been undertaken using what is termed “topoclimatic analysis”, which is defined in general terms as the climatic characteristics of a place that can be described as a combination of topographic parameters (Okolowicz, 1969, cited by Kaminski and Radosz, 2005). The cartographic representation of climatic variables has generally been carried out manually, subject to expert criteria, such as isothermal and isohyet maps, which are isolines that join points with the same temperature and the same level of precipitation, respectively. These isolines are drawn on the basis of an altitudinal gradient, considering the values registered each year from observatories in the zone, the density of which conditions the interval of its plotting (Fernández, 1996). As an alternative to this method of representation, different interpolation algorithms have been developed and automated to estimate and predict the spatial distribution of a variable based on timely data generated by meteorological stations (Hijmans et al., 2005; Hunter and Meentemeyer, 2005; Attorre et al., 2007).

The processes of obtaining climatic cartography, whether through the use of a traditional methods (analogic) or an automated method, is conditioned by the availability and quality of climatic information or data that comes mainly from meteorological stations located in particular points in space (Skirvin et al., 2003; Morales et al., 2006) that often do not cover the totality of a region, leaving areas without information. Given this, models are developed that allow for spatially representing the monthly distribution of temperature and precipitation on an ongoing basis, using Geographic Information System (GIS) raster, obtaining Digital Terrain Models (DTM), which are spatial representations of continuous variables (Doyle, 1978; cited by Florinsky, 1998; Daly et al., 2008). Given the importance of having climatic information to develop studies in a determined area, and considering the physiographic variability of Chile associated with the lack of good coverage by meteorological stations and the continuous character of the distribution of climatic variables, this study aims to generate estimation models of climatic information that allow for continuously characterizing the whole territory, taking into consideration physiographic variables.

MATERIALS AND METHODS

Area of study

The study was carried out in the Bío Bío and La Araucanía Regions, central Chile (36°0’ to 39°38’ S; 70°49’ to 73°57’ W) covering an approximate surface area of 68 704 km² (Figure 1 ). The Bío Bío Region marks a transition from the temperate climate that characterizes the central zone of Chile and the rainier climate characteristic of areas south of the Laja River. The characteristics of a temperate Mediterranean climate predominate in this region. Nevertheless, differences are observed within the territory, fundamentally owing to the effect of the latitudinal gradient and the distance from the coast. The La Araucanía Region presents two well-differentiated climatic typologies, the first located in the intermediate zone in the north of the region until around 39º S lat, characterized by precipitation distributed throughout the year and a relatively short dry season of no more than 3 or 4 months during the summer. The second zone is characterized by a temperate rainy climate with Mediterranean influence, while extends until Castro in the Los Lagos Region.

Climatic and topographic data

Data was used for this research from stations with ten or more years history of taking climatic measurements (Table 1) derived from: Climatology in Chile (United Nations Development Program UNDP - Government of Chile, 1964), Agroclimatic Map of Chile (INIA, 1989), General Water Directorate (DGA) and yearbooks from the Meteorological Directorate of Chile (DMC). To spatially represent the equations, four Digital Terrain Models were used, with information on latitude, longitude, exposure and distance from the coast, and a Digital Elevation Model obtained from the Shuttle Radar Topography Mission (SRTM), of the United States Geological Survey (USGS, 2004), all of them with a pixel size of 90 m.

Table 1. Meteorological stations used in the temperature models.

Station

Latitude

Longitude

Altitude

Distance to coast

Years

Period


degrees

m.a.s.l.

km



Cauquenes

-35.971

-72.336

142

28.05

22

NE

Chillan Viejo

-36.633

-72.126

140

70.78

15

NE

B. O'Higgins Chillán

-36.571

-72.036

124

76.50

16

1982/1997

Punta Tumbes

-36.624

-73.102

120

0.61

30

1916/1945

Caracol

-36.651

-71.389

725

133.90

20

1988/2007

Embalse Coihueco

-36.638

-71.797

330

98.94

31

1977/2007

Talcahuano

-36.721

-73.119

84

0.97

18

NE

Carriel Sur Concepción

-36.771

-73.052

12

3.94

16

1982/1997

Concepción

-36.837

-73.036

10

10.58

20

NE

Diguillín

-36.868

-71.643

710

120.31

38

1970/2007

Quilaco

-37.686

-72.006

225

119.58

38

1970/2007

Angol

-37.804

-72.702

79

71.64

15

NE

Contulmo

-38.012

-73.228

60

20.91

19

1988/2007

Laguna Malleco

-38.213

-71.814

959

143.76

18

1990/2007

Traiguén

-38.256

-72.654

189

70.90

26

1979/2004

Lonquimay

-38.455

-71.365

878

180.19

16

1992/2007

Malalcahuello

-38.471

-71.571

900

162.58

16

1989/2004

Lautaro

-38.534

-72.434

240

89.59

10

1995/2004

Liucura

-38.646

-71.091

1035

196.44

20

1988/2007

Carillanca

-38.687

-72.419

200

84.95

25

NE

Temuco

-38.771

-72.636

114

64.07

26

1920/1945

Maquehue Temuco

-38.754

-72.636

114

64.78

16

1982/1997

Puerto Saavedra

-38.793

-73.396

5

1.26

25

1979/2004

Tricauco

-38.844

-71.554

518

151.67

16

1989/2004

Teodoro Schmidt

-39.003

-73.095

47

18.17

16

1989/2004

Pucón

-39.289

-71.927

200

110.62

19

1986/2004

Loncoche

-39.371

-72.636

31

49.02

14

NE

Puesto (Aduana)

-39.534

-71.557

726

143.11

17

1988/2004

Pichoy Valdivia

-39.621

-73.086

19

17.10

15

1982/1984-1986/1997

NE: not specific (INIA, 1989).

To adjust the temperature model, only the stations that had data for more than 10 yr were considered, from the four aforementioned sources. On the other hand, owing to the greater spatial and temporal variability of precipitation, only data from DGA stations with ten or more years of sampling records were used (Table 2). For the development, adjustment and spatial representation of topoclimatic models, it is necessary to homogenize the information, given that the stations that provide information have different reference systems, so that all the information of a geographic character was worked in the World Geodetic System (WGS84) in spherical coordinates. Subsequently, the database was completed that was used for the generation and spatial representation of the topoclimatic models. The physiographic variables included in this study were altitude, latitude, longitude and distance from the coast. All these variables were represented with a pixel resolution of 90 m, which was used for the spatial representation of topoclimatic models and is responsible for the continuous character of the cartographies of temperature and precipitation that were generated. Once the equations have been estimated, thematic cartographies of a continuous character were developed using the computer program IDRISI® (IDRISI 32, Clark Labs, Clark University, Massachusetts, USA) and the MDTs of latitude, longitude, altitude and distance to the coast.

Table 2. Meteorological stations used in the precipitation models

Station

Latitude

Longitude

Altitude

Distance to coast

Years

Period


degrees

m.a.s.l.

km



Embalse Tutuven

-35.901

-72.376

400

20.662

28

1977/2004

Embalse Ancoa

-35.922

-71.287

430

116.472

30

1975/2004

Los Huinganes

-35.941

-71.942

132

58.817

11

1994/2004

Liguay

-35.948

-71.690

145

81.068

30

1975/2004

Quella

-36.061

-72.092

130

51.920

30

1975/2004

Mangarral

-36.233

-72.342

150

42.189

13

1992/2004

Millauquen

-36.316

-72.038

130

69.509

13

1992/2004

San Agustín de Puñual

-36.352

-72.393

100

38.349

12

1993/2004

Coelemu

-36.484

-72.698

30

16.995

30

1975/2004

Dichato

-36.546

-72.931

4

0.298

25

1980/2004

San Fabián

-36.561

-71.548

500

117.421

30

1975/2004

Chillán Viejo

-36.633

-72.126

140

70.776

28

1977/2004

Rafael

-36.637

-72.844

198

10.099

12

1993/2004

Embalse Coihueco

-36.638

-71.797

330

98.937

30

1975/2004

Caracol

-36.651

-71.389

725

133.896

18

1987/2004

Nueva Aldea

-36.653

-72.455

60

43.985

30

1975/2004

Caman

-36.674

-71.298

920

142.368

12

1993/2004

Cancha Los Litres

-36.705

-72.578

250

34.888

12

1993/2004

Chillancito

-36.761

-72.421

70

49.872

30

1975/2004

Las Pataguas

-36.790

-72.891

250

11.022

12

1993/2004

Mayulermo

-36.817

-71.893

375

97.221

13

1992/2004

Diguillín

-36.868

-71.643

710

120.308

30

1975/2004

Las Trancas

-36.910

-71.477

1160

135.700

30

1975/2004

Fundo Atacalco

-36.916

-71.579

730

126.850

30

1975/2004

Pemuco

-36.977

-72.096

200

83.993

30

1975/2004

Las Cruces

-37.109

-71.766

650

116.663

12

1993/2004

Cholguán

-37.152

-72.066

225

94.780

30

1975/2004

Laja

-37.271

-72.719

40

42.258

30

1975/2004

Trupán

-37.279

-71.822

460

119.539

30

1975/2004

Tucapel

-37.294

-71.952

330

108.433

30

1975/2004

Fundo Las Achiras

-37.354

-72.386

125

73.155

30

1975/2004

Los Ángeles

-37.502

-72.407

120

78.696

30

1975/2004

Fundo San Lorenzo

-37.509

-71.768

740

130.430

30

1975/2004

San Carlos de Purén

-37.595

-72.277

150

93.836

20

1985/2004

Quillaileo

-37.653

-71.712

500

141.067

12

1993/2004

Quilaco

-37.686

-72.006

225

119.578

30

1975/2004

Mulchen

-37.716

-72.244

130

103.532

30

1975/2004

Angol (La Mona)

-37.779

-72.637

154

78.003

25

1975/1990-1996/2004

Cerro El Padre

-37.780

-71.865

400

135.501

30

1975/2004

Cañete

-37.798

-73.391

25

15.608

30

1975/2004

Pilguen

-37.832

-72.219

300

111.884

12

1993/2004

Poco a Poco

-37.872

-71.993

650

130.592

13

1992/2004

Collipulli

-37.955

-72.442

257

90.200

30

1975/2004

Contulmo

-38.012

-73.228

60

20.915

17

1987/1989-1991/2004

Tranaman

-38.021

-73.009

55

39.732

17

1988/2004

Encimar Malleco

-38.104

-72.117

420

117.025

16

1989/2004

Lumaco

-38.164

-72.902

127

48.305

30

1975/2004

Laguna Malleco

-38.213

-71.814

959

143.761

30

1975/2004

Las Mercedes, Victoria

-38.243

-72.210

466

109.370

19

1986/2004

Traiguén

-38.256

-72.654

189

70.904

26

1979/2004

Galvarino

-38.410

-72.786

58

62.716

26

1979/2004

Rari-Ruca

-38.425

-72.011

361

128.381

13

1992/2004

Curacautín

-38.437

-71.885

499

138.398

30

1975/2004

Quillén

-38.464

-72.386

275

95.918

30

1975/2004

Malalcahuello

-38.471

-71.571

900

162.582

16

1989/2004

La Cabaña

-38.530

-73.121

709

33.204

16

1989/2004

Lautaro

-38.534

-72.434

240

89.591

30

1975/2004

Chochol

-38.609

-72.845

72

52.739

17

1988/2004

Vilcún

-38.672

-72.218

376

101.976

30

1975/2004

Cherquenco

-38.683

-72.002

528

119.496

17

1988/2004

Carahue

-38.713

-73.148

50

24.200

10

1995/2004

Pueblo Nuevo,Temuco

-38.723

-72.570

115

71.350

30

1975/2004

Almagro

-38.781

-72.952

20

38.231

10

1995/2004

Puerto Saavedra

-38.793

-73.396

5

1.263

26

1979/2004

Tricauco

-38.844

-71.554

518

151.667

16

1989/2004

Cunco

-38.929

-72.016

470

110.422

30

1975/2004

Sendos Freire

-38.950

-72.667

123

43.491

24

1981/2004

Los Laureles

-38.959

-72.188

250

95.151

30

1975/2004

Quecherehua

-38.998

-72.044

420

105.993

30

1975/2004

Teodoro Schmidt

-39.003

-73.095

47

18.172

16

1989/2004

Quitratue

-39.155

-72.658

88

50.106

30

1975/2004

Toltén

-39.181

-73.166

17

7.169

10

1995/2004

Lago Caburga

-39.221

-71.585

480

140.684

24

1977/2000

Villarrica

-39.278

-72.228

187

84.799

30

1975/2004

Pucón

-39.289

-71.927

200

110.619

21

1984/2004

Curarrehue

-39.363

-71.581

580

140.096

28

1977/2004

Loncoche

-39.371

-72.636

31

49.024

11

1994/2004

Chanlelful

-39.465

-72.375

166

72.279

17

1988/2004

Puesto (Aduana)

-39.534

-71.557

726

143.112

17

1988/2004

Lago Calafquén

-39.552

-72.152

375

92.485

18

1987/2004

Liquiñe

-39.731

-71.853

230

121.527

11

1994/2004

Lago Riñihue

-39.774

-72.453

120

73.540

20

1985/2004

Topoclimatic modeling

The modeling of different climatic variables was done by applying a mathematical model described by Equation [1]:

where F(x1, x2 ,.....xn) represents a climatological variable in a given period of time, x is a descriptor variable, which can be latitude, longitude, altitude, distance from the coast or slope, among others, and aj are coefficients to be determined (Qiyao et al., 1991; Canessa, 2006). With these relationships, the data matrices are calculated for each climatological variable in binary format (raster) for the months of January and July. The binary metrical format was used because it corresponds to the format of the IDRISI Program®, which is used for the spatial characterization of continuous variables. The proposed topoclimatic model (Equation [1]) to estimate mean monthly temperature and precipitation considered that spatial variation of the aforementioned variables is determined by factors of position on the surface of the earth, this being latitude (LAT, degrees) and longitude (LON, degrees), as well as physiographic factors like altitude (ALT, m.a.s.l.) and distance to the coast (DL, km), as shown in Equation [2].

Y = a0 + alLAT + a2LON + a3ALT + a4DL [2]

where Y represents mean monthly temperature and precipitation estimated for each month, while the values a0, a1…a4 are coefficients of the corresponding equation. All the models represented by Equation [2] were submitted to a stepwise regression procedure in its backward form, with the aim of finding the reduced models of greater statistical significance. The goodness of fit of all the topoclimatic regressions previously described was calculated with a statistical significance of 95% (P ≤ 0.05), both for the complete model and for each one of its coefficients. To validate the models, four stations were used for the case of temperature (Table 3) and eight for precipitation (Table 4). The spatial coverage of the available stations was analyzed to choose the stations for validation, selecting those that were distributed all along the zone under study, avoiding stations that were isolated from other stations. As well, to minimize errors in the administrative boundaries of the two regions, stations outside the area of study were considered.

Table 3. Selected stations for the validation of the models of mean monthly temperature

Season

Latitude

Longitude

Altitude

Distance to coast


degrees

m.a.s.l.

Km

Chillán

-36.633

-72.126

140

70.78

Carriel Sur Concepción

-36.771

-73.052

12

3.94

Lonquimay

-38.455

-71.365

878

180.19

Lautaro

-38.534

-72.434

240

89.59

Table 4. Selected stations for the validation of the models of mean monthly precipitation

Season

Latitude

Longitude

Altitude

Distance to coast


degrees

m.a.s.l.

Km

San Agustín de Puñual

-36.352

-72.393

100

38.349

Caman

-36.674

-71.298

920

142.368

Cancha Los Litres

-36.705

-72.578

250

34.888

San Carlos de Purén

-37.595

-72.277

150

93.836

Rari-Ruca

-38.425

-72.011

361

128.381

Lautaro

-38.534

-72.434

240

89.59

Quecherehua

-38.998

-72.044

420

105.993

Curarrehue

-39.363

-71.581

580

140.096

RESULTS AND DISCUSSION

To calculate the models, 25 stations with temperature information and 74 stations with precipitation information were used, which meet the requirement of ten or more years of records. The spatial location of the selected stations is presented in Figures 2a and 2b.

The distribution of stations with temperature data has a low density and representativeness in the Bío Bío Region (Figure 2). As well, it can be observed that the stations with pluviometric data are mainly concentrated in the intermediate valley of the area of study, without information from the coastal Nahuelbuta mountain range or areas above 1200 m.a.s.l. in the Andean Range. Given this, the authors recommend not including aforementioned zones for the estimation of the models.

Estimation of mean monthly temperature (TMMest(i), ºC)

To estimate TMMest(i) (where i corresponds to the months of the year), the general model of Equation [1] was used and the values corresponding to coefficients an were obtained with the backward stepwise analysis (Table 5). The models generated for the different months were significant to a level of confidence of 95% (P ≤ 0.05), explaining over 60% of the variation of the data and the standard error was less than 1.5 ºC. The descriptor variable used resulted significant with 95% of confidence.

Table 5. Values of the regression coefficient that notes the dependence of mean monthly temperature (TMMest) on physiographic variables according to Equation [2].


a0

a1

a2

a3

R2 (%)

Standard error

P value

TMestene

235.598

1.10635

2.41645

-6.61815×10-3

62.21

1.48

0.0001

TMestfeb

199.049

1.14058

1.90388

-5.14687×10-3

61.31

1.39

0.0001

TMestmar

167.758

1.00095

1.56891

-4.90345×10-3

68.58

1.08

0.0000

TMestabr

46.7321

0.89483

0

-3.2538×10-3

75.52

0.88

0.0000

TMestmay

37.6259

0.710772

0

-3.6215×10-3

79.46

0.77

0.0000

TMestjun

37.4814

0.74865

0

-4.245×10-3

82.32

0.81

0.0000

TMestjul

35.781

0.713728

0

-4.86937×10-3

85.39

0.79

0.0000

TMestago

35.1862

0.68114

0

-4.19248×10-3

80.14

0.83

0.0000

TMestsep

37.5339

0.711895

0

-3.48239×10-3

78.44

0.78

0.0000

TMestoct

40.7885

0.7532

0

-3.01246×10-3

66.50

0.98

0.0000

TMestnov

159.176

0.774336

1.58728

-5.59061×10-3

67.54

1.07

0.0000

TMestdic

210.495

1.09226

2.10016

-6.13975×10-3

68.99

1.24

0.0000

With these values, the mean monthly temperatures of the stations selected for validation of the models (Table 6).

Table 6. Statistical summary of the stations with mean monthly temperature considered for the validation

Stations

R2 (%)

Standard Error

P Value

Chillán

98.82

0.45

0.0000

Carriel Sur

98.77

0.37

0.0000

Lonquimay

99.20

0.36

0.0000

Lautaro

98.37

0.45

0.0000

The statistical difference between what was measured and what was estimated for the four seasons indicate that the regressions are all significant to 95% of confidence (P ≤ 0.05, Table 6). The determination coefficients indicate that the models explain over 98% of the variation observed in the data and the standard error was lower than 0.5 ºC. These results are presented graphically in Figure 3.

An overestimation of the model can be observed in Figure 3b. This could be explained by the proximity of the Carriel Sur station to the Concepción station, the latter being within the city, while the former is located some 8 km from Concepción. Concepción has higher mean temperatures owing to the “caloric island” effect associated with populated centers (Rivero, 1988 cited by Navarrete et al., 2001).

Estimation of mean monthly precipitation (PPMest(i), mm)

As was done for the mean temperature models, the general model of Equation [2] was used, and the values corresponding to coefficients an were obtained with backward stepwise analysis. The models generated for different months were significant to a level of confidence of 95% (P ≤ 0.05, Table 7), explaining over 60% of the variation in the data and the standard error was less than 70 mm. The descriptor variables used resulted significant with 95% of confidence.

Table 7. Values of the regression coefficient that notes the dependence of mean monthly precipitation (PPMest) on physiographic variables according to [2].


a0

a1

a2

a3

a4

R2 (%)

Standard error

P value

PPMestene

1087.32

-17.683

23.734

0.013808

-0.163251

79.24

9.25

0.0000

PPMestfeb

1253.4

-13.1457

23.6611

0.0297537

-0.162335

76.22

9.13

0.0000

PPMestmar

2040.91

-26.7829

41.24

0.0395461

-0.382452

85.69

11.07

0.0000

PPMestabr

1369.52

-27.4925

32.0169

0.0894716

0

75.56

25.72

0.0000

PPMestmay

3327.51

-22.0545

54.9394

0.163666

0

63.46

51.94

0.0000

PPMestjun

11012.3

-70.4274

184.006

0.270749

-1.6294

68.90

69.46

0.0000

PPMestjul

3581.95

-28.1637

61.5454

0.185075

0

64.30

58.18

0.0000

PPMestago

1548.44

-31.8821

36.0421

0.135594

0

64.45

43.62

0.0000

PPMestsep

4589.99

-30.1919

77.2407

0.114014

-0.537785

77.01

26.68

0.0000

PPMestoct

4020.95

-40.1851

74.9192

0.100963

-0.532335

82.89

23.34

0.0000

PPMestnov

2993.47

-31.9756

56.8982

0.0577807

-0.428223

85.74

14.74

0.0000

PPMestdic

2017.42

-30.8262

43.1771

0.0499619

-0.331919

82.36

15.57

0.0000

 

Mean monthly precipitation was estimated with these values from the stations selected for validation of the models. The regression statistics for the validation stations are presented in Table 8.

Table 8. Statistical summary of the stations, with monthly mean precipitation data considered for the validation.

Stations

R2 (%)

Standard error

P value

San Agustín de Puñual

99.06

7.41

0.0000

Caman

96.03

31.85

0.0000

Cancha Los Litres

98.28

11.28

0.0000

San Carlos de Purén

98.46

10.69

0.0000

Rari-Ruca

92.42

30.97

0.0000

Lautaro

98.74

10.93

0.0000

Quecherehua

96.43

23.73

0.0000

Curarrehue

96.83

26.86

0.0000

 

The statistical difference between what was measured and what was estimated for the eight stations of validation indicate that the regressions are all significant to 95% of confidence (P ≤ 0.05). The determination coefficients indicate that the models explain over 92% of the variation observed in the data and the standard error was less than 32 mm (Table 8). The graphic representation of the models for the eight seasons is presented in Figure 4.

The calculated models show significant statistical values (P ≤ 0.05), and the values of R2 in the majority of the estimations are higher than 70%. These values are within the range of those obtained in other studies of a topoclimatic character undertaken in Europe by Ninyerola et al. (2000), who reports values of R2 higher than 70% for the estimation of precipitation and higher than 86% temperature. In turn, the studies of Goodale et al. (1998) indicate values higher than 69% for the estimation of mean precipitation. Nevertheless, these studies have a high density of stations, greater than those used in this work. As well, the regions where the models are developed tend to present less geographic complexity than is found in the zone under study.

Spatial analysis with thermopluviometric data is problematic because meteorological stations that operate under different institutions provide information using distinct cartographic reference systems that rarely have detailed databases. As well, the stations lack strict spatial location, considering only a level of exactitude of degrees and minutes of longitude and latitude. To resolve this problem there should be a homogenization and documentation criterion of the location of meteorological stations in space in a unique reference system and incorporate exactitude to the level of latitudinal/longitudinal seconds.

A continuous model of climatic variables facilitates carrying out environmental studies of a local character, allowing for deriving a range of models that have the thermopluviometric characteristics of a determined place as independent variables.

This work is a starting point to improve models of a topoclimatic character, whether by the quality and quantity of stations with thermopluviometric data or by the incorporation of new factors that modify the space-time variability of precipitation and temperature. Among the factors that could be included to improve the models is the use of satellite images, specifically spectral indices, reflectivity and surface temperature (Pesquer et al., 2007). For other meteorological variables, such as extreme mean monthly temperatures, we believe that it is possible to apply the same method.

Spatial representation of the models

Figure 5 and 6 show the cartographic results of the application of temperature and precipitation models.

CONCLUSIONS

It was possible to estimate the spatial distribution of the mean values of precipitation and temperature with statistical reliability of 95%, through the generation of topoclimatic models based on multiple linear regressions with descriptor variables, such as position (latitude, longitude, altitude and distance to the coast).

Despite the extreme physiographic variability of the territory under study and the low density of meteorological stations, the topoclimatic models satisfactorily estimated mean monthly and annual temperature and precipitation in vast areas lacking stations, such as the Nahuelbuta Range.

The method developed allows for storing the results in binary matrices compatible with geographic information systems, which in turn allows for calculating other derived variables, such degree-days and chilling hours, which are very useful for studies of agricultural adaptability.

AKNOWLEDGEMENTS

Thanks to the General Water Directorate for facilitating access to a major part of the meteorological data used in carrying out this study.

LITERATURE CITED

  1. Attorre, F., M. Alfo, M. De Sanctis, F. Francesconia, and F. Brunoa. 2007. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International Journal of Climatology 27:1825-1843.
  2. Canessa, F. 2006. Evaluación de los recursos climáticos de la IV Región de Coquimbo, mediante la utilización de Topoclimatología e imágenes NOAA-AVHRR. Tesis Ingeniería. Universidad de Chile, Facultad de Ciencias Agronómicas, Santiago, Chile.
  3. Daly, C., M. Halbleib, J. Smith, W. Gibson, M. Doggett, G. Taylor, et al. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28:2031-2064.
  4. Di Castri, F., y E. Hajek. 1976. Bioclimatología de Chile. 129 p. Editorial Universidad Católica de Chile, Santiago, Chile.
  5. Errázuriz, A., P. Cereceda, J. González, M. González, M. Henríquez, y R. Rioseco. 1994. Manual de geografía de Chile. 415 p. Editorial Andrés Bello, Santiago, Chile.
  6. Fernández, F. 1996. Manual de climatología aplicada. Clima, medio ambiente y planificación. 285 p. Editorial Síntesis, Madrid, España.
  7. Florinsky, I. 1998. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography 22:33-60.
  8. Goodale, C., J. Aber, and S. Ollinger. 1998. Mapping monthly precipitation, temperature and solar radiation for Ireland with polynomial regression and digital elevation model. Climate Research 10:35-49. Available at http://www.int-res.com/articles/cr/10/c010p035.pdf (accessed 26 November 2005).
  9. Hijmans, R., S. Cameron, J. Parra, P. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.
  10. Hufty, A. 1984. Introducción a la climatología. 292 p. Editorial Ariel, Barcelona, España.
  11. Hunter, R., and R. Meentemeyer. 2005. Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology 44:1501-1510.
  12. INIA. 1989. Mapa agroclimático de Chile. 221 p. In Novoa, R., y S. Villaseca (eds.) Instituto de Investigaciones Agropecuarias INIA, Centro Regional de Investigación La Platina, Santiago, Chile.
  13. Kaminski, A., and J. Radosz. 2005. Topoclimatic mapping on 1:50000 scale, the map sheet of Bytom. Available at http://www.geo.uni.lodz.pl/~icuc5/text/P_8_1.pdf (accessed 18 May 2005).
  14. Morales, L., F. Canessa, C. Mattar, R. Orrego, y F. Matus. 2006. Caracterización y zonificación edáfica y climática de la Región de Coquimbo, Chile. Revista de la Ciencia del Suelo y Nutrición Vegetal 6(3):52-74.
  15. Navarrete, G., J. Hernández González, A. Capelli De Steffens, y M.C. Píccolo. 2001. La isla de calor estival en Temuco, Chile. Papeles de Geografía 33:49-60.
  16. Ninyerola, M., X. Pons, and J. Roure. 2000. Climatological modeling. A methodological approach of climatological modeling of temperature and precipitation through GIS techniques. International Journal of Climatology 20:1823-1841.
  17. Pesquer, L., J. Masó, y X. Pons. 2007. Integración SIG de regresión multivariante, interpolación de residuos y validación para la generación de rásters continuos de variables meteorológicas. Revista de Teledetección 28:69-76.
  18. Programa de las Naciones Unidas para el Desarrollo (PNUD)-Gobierno de Chile. 1964. Proyecto Hidrometeorológico. Climatología en Chile. Fascículo I. Valores normales de 36 estaciones seleccionadas. Período 1916-1945. s.e. Santiago de Chile. s.p.
  19. Qiyao, L., Y. Jingming, and F. Baopu. 1991. A method of agrotopoclimatic division and its practice in China. International Journal of Climatology 11:86-96.
  20. Romero, R., et J. Martínez. 2001. La cartographie climatique dans la planification des zones de protection spéciale d'oiseaux. In XIV Congreso Internacional de Climatología, Sevilla, España. 12-15 septiembre 2001. Association Internationale de Climatologie & Universidad de Sevilla. Available at http://www.juntadeandalucia.es/medioambiente/clima_atmosfera/posters1.pdf (accessed 14 July 2005).
  21. Skirvin, S., S. Marsh, M. McClaranw, and D. Mekoz. 2003. Climate spatial variability and data resolution in a semi-arid watershed, south-eastern Arizona. Journal of Arid Environments 54:667-686.
  22. USGS. 2004. Shuttle radar topography mission, 3 Arc Second scene. Unfilled Unfinished 2.0. Global Land Cover Facility. Febrero 2000. University of Maryland, College Park, Maryland, USA.

Copyright 2010 - Chilean Journal of Agricultural Research


The following images related to this document are available:

Photo images

[cj10068f5.jpg] [cj10068f3.jpg] [cj10068t1.jpg] [cj10068t2b.jpg] [cj10068f1.jpg] [cj10068t7.jpg] [cj10068t4.jpg] [cj10068f6.jpg] [cj10068t3.jpg] [cj10068f4.jpg] [cj10068t8.jpg] [cj10068f2.jpg] [cj10068t5.jpg] [cj10068t6.jpg] [cj10068t2a.jpg]
Home Faq Resources Email Bioline
© Bioline International, 1989 - 2020, Site last up-dated on 19-Mar-2020.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil