RESISTANCE TO POST-HARVEST MICROBIAL ROT IN YAM: INTEGRATION OF GENOTYPE AND STORAGE METHODS

D. NYADANU, H. DAPAAH and A.D. AGYEKUM
Department of Crop and Soil Sciences Education, College of Agriculture Education, University of Education,
Winneba, P. O. Box 40, Asante Mampong, Ghana
Corresponding author: dnyadanu@gmail.com
(Received 19 November, 2013; accepted 12 February, 2014)

ABSTRACT

Post-harvest microbial rot is an important disease that causes severe losses in yam (Dioscorea spp.) storage. Rot from microbial infection of healthy yam tubers reduces their table quality and renders them unappealing to consumers. A study was carried out at Bimbilla in the Nanumba North District of Ghana to evaluate possible interactions of yam genotypes and storage methods for controlling internal rot in yam. Four local varieties (Labalkor, Kplondzo, Olordor and Fushiebila) were studied with four storage methods (barn, pit, platform and heap methods) in a 4 x 4 factorially arrangement. There were significant (P< 0.001) differences among genotypes for resistance to internal rot, with Olordor and Kplondzo recording the lowest internal microbial rot, suggesting their potential in resisting the disease. There were also significant differences (P< 0.05) among the storage methods, with barn and platform being most suitable in reducing the incidence of internal rot in yam. The interaction between yam genotypes and storage methods was not significant (P> 0.05).

Key Words: Barn, Dioscorea spp., internal rot

INTRODUCTION

Yam (Dioscorea spp.) constitutes an important staple food in the tropics; being a major source of carbohydrates, vitamins and dietary fibres (Ogaraku and Usman, 2008). The crop is also known to contain medicinal properties for the treatment of diabetes mellitus and hypercholesterolemia (Okigbo and Ogbonna, 2006). Ghana exports about 12,000 tonnes of yam
annually which generates foreign revenue for the country (MIDA, 2012).

Despite the nutritional and economic importance of yam, its production is limited by pests and diseases. It has been estimated that an average of over 25% of the yield is lost annually to diseases and pests globally (Arene, 1987; Ezeh, 1998; FAO, 1998). One of the major diseases affecting yam production in the tropics is internal microbial rot. Internal rot is the condition that develops in yam tuber where the whole tuber appears wholesome and attractive, but has developed rapid and extensive breakdown of internal tissues. This condition, with time renders the whole tuber rotten. Several microorganisms have been associated with rot in yam. They include fungi Aspergillus niger, Lasiodiplodia theobromae, Fusarium solani, Penicillium spp., Rhizopus stolonifer and Mucor spp. (Ikuton, 1983a; Adimora et al., 1989; Osai and Ikotun, 1994; Acholo et al., 1997; Cornelius and Oduro, 1999; Okigbo and Ikediugwu, 2000). Tuber rot organisms produce a variety of extracellular enzymes and a host of metabolites that degrade cell wall polymers, resulting in maceration of parenchymatous tissues (Ikuton, 1983a, 1983b, 1984). Infection is introduced by a breakdown of tissues of the peridermal layer through wounds inflicted by rodents, nematodes and farm implements or improper handling of tubers (Ogaraku and Usman, 2008).

Rot from microbial infection of healthy tubers reduces their table quality and renders them unappealing to consumers (Amusa and Baiyewu, 1999). Okigbo and Ikediugwu (2000) indicated that between 20 and 39.5% of stored tubers may be lost to rot; while Bonire (1985) estimated microbial postharvest losses in yam at 40%. According to Adesiyan and Odihirin (1975), over 60% of white yam varieties get rotten when stored for more than six months in Nigeria. Observations from farmer’s field reveal that some farmers in Ghana lose as high as 70% of their stored yam to rot (Aidoo, 2007). Some white yam varieties such as ‘dente’, ‘pona’ and ‘labreko’ that are preferred by most consumers in Ghana, do not store for more than six months due to infection by rot microorganisms. As a result, farmers sell their produce immediately after harvest at low prices. This practice also affects farmers’ food security particularly during off-season.

Use of chemicals such as fungicides to control the rot has been reported variously (Mugnucci et al., 1984; Plumbley et al., 1985; Nnodu and Nwankiti, 1986). Botanicals such as leaf extracts of Ficus thomningii, F. saussureana, F. exasperate and F. sur have been reported (Oyelana et al., 2011). However, use of botanicals has not been effective against microbial rot in yam. On the other hand, use of chemicals is expensive and, thus not affordable by small-scale farmers. Also, there are concerns about health hazards and environmental pollution. Moreover, use of chemicals and botanicals has been associated with a number of deleterious and physiological effects on plant tissues (Amusa and Ayinla, 1997). Breeding for resistance to internal rot in yam has been regarded as the most economical and environmentally friendly way of controlling the disease. Natural host plant resistance to microbial rot in yam poses no risks to the consumer and environment.

The objective of this study was to understand the interaction between genotypes and farmers indigenous storage practices in resistance to microbial rot in yam.

MATERIALS AND METHODS

The study was carried out at Bimbilla in the Nanumba North District of Ghana, in 2012/2013 farming season. Rainfall of the area ranges from 1000 -1500 mm and temperature from 26 - 32°C with generally sunny weather (Ghana Meteorological Services, 2012). Soil texture is sandy loam, with little pebbles.

The experimental design used was a 4 x 4 factorial laid out in a randomised complete block design, with four replications. The factors studied included four local yam genotypes (Labalkor, Fushinbilla, Kplondzo and Olordor) and four storage methods (dug-out pit, barn, platform and heap on the ground).

The yam seeds (sets) of the four local varieties were collected from local farmers in the district. The yam sets were planted in the field by burying them in the mounds of two meters in diameter. Weeding was performed along with the
removal of parasitic epiphytes every month. Five months after growing, the yam tubers were carefully dug out using hand hoes. Harvesting was done by gently digging out the yams to avoid bruises on the tubers.

The dug-out pit method consisted of four pits of 60 cm deep and 40 cm width, dug under a shade tree. The pits were lined with dry Guinea grass (*Panicum* spp). Half a milliliter of termitecot was sprayed in the pits to prevent attack of termites and other destructive insect pests. Twenty tubers (5 tubers from each yam genotype) were arranged on the straw of Guinea grass, with the tip of tuber facing downwards in each of the four pits. The tubers were then covered with soil and dry grass on top to give some cooling effect as practiced by farmers.

Four medium sized yam barns were constructed using poles, fork sticks, ropes, zana mats and thatch grass. Plate 1 shows a structure of the barn. Twenty tubers (5 tubers from each yam genotype) were arranged horizontally with the heads of the tubers facing the same direction in each of the four barns.

The platform method also consisted of four raised platforms 30 cm from the ground, constructed with pieces of 5 cm x 10 cm of wood, nails and was roofed with thatch grass (*Imperata cylindrica* L.), (Plate 2). Twenty tubers (5 tubers from each yam genotype) were arranged
horizontally with the tuber heads facing the same direction in each of the four platforms.

The heap-on-the-ground method involved identifying a well-drained flat ground spot. Dried maize stocks were collected and placed on the ground. Twenty yam tubers (5 tubers from each yam genotype) were then piled upright in a triangular form in a heap on the dried maize material. Dried maize stocks were then used to cover the pile of tubers. There were four piled heaps.

At the end of five months storage of the tubers under the four different storage techniques, the tubers were taken for inspection of internal rot. This was done by a cross-sectional cut through each of the tubers. The number of tubers of each genotype without internal rot was recorded. The internal rot portions of tubers that were infected were scooped out with knife and spatula into a beaker and then weighed using a digital balance. The rotten free portions of each tuber was also cut into pieces and weighed. The percentages of rotten and rotten free portions of tubers were estimated in relation to the total weight of tubers as:

\[
\% \text{ of rotten yam tissue} = \frac{\text{Weight of rotten tissue}}{\text{Weight of tuber (rotten + unrotten tissues)}} \times 100
\]

The data obtained were analysed using Analysis of Variance (ANOVA) using GenStat® 11th version (GenStat, 2008). Significant differences among the genotypic and storage method means were judged by using the Least Significant Difference (LSD) at P <0.05.

RESULTS AND DISCUSSION

Significant differences were observed among the yam genotypes for resistance to post-harvest microbial rot (Table 1). The differential response of yam genotypes to microbial rot suggests that resistance to post-harvest microbial rot disease was under genetic control and should, therefore, be liable to genetic improvement. This provides an opportunity for selection of yam genotypes with higher resistance to internal microbial rot. The results found in the present study conform to the previous results of Apovughaye (1989) and Kwoseh et al. (2007), who observed genetic variation in yam varieties for resistance to dry rot.

No incidence of microbial rot was recorded in yam genotype Olordor under all the four storage methods used (Table 1). A lower percentage of rotten tissue was recorded for the yam genotype Kplondzo compared with Labalkor and Fushinbila under the pit and heap methods. No incidence of rot was observed for Kplondzo under the barn and platform methods of storage (Table 1). Thus, Olordor and Kplondzo are promising genotypes for resistance against microbial rot in yam. Labalkor showed the poorest resistance to the rot under all methods of storage (Table 1). Plate 3 shows internal rot of tissues of Kplondzo and Labalkor which were shown to be resistant and susceptible genotypes, respectively.

There were also significant (P<0.05) differences among storage methods in the amount of rotten tissues. Less rotten tissue occurred in

<table>
<thead>
<tr>
<th>Yarn variety</th>
<th>Storage method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pit method</td>
</tr>
<tr>
<td>Labalkor</td>
<td>68.5</td>
</tr>
<tr>
<td>Kplondzo</td>
<td>5.8</td>
</tr>
<tr>
<td>Olordor</td>
<td>0.0</td>
</tr>
<tr>
<td>Fushinbilla</td>
<td>17.5</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>4.74</td>
</tr>
</tbody>
</table>
the barn and platform methods indicating their potential to reduce the incidence of microbial rot in yam. FAO (1998) also considered barn and platform methods of storage of yam to reduce the risk of attack by termites or rotting. It was, however, stated that the barns are effective for yam storage during the dry season, but once the rainy season starts, tubers stored in barns tend to deteriorate rapidly with the constantly moist environment enhancing the rotting of the tubers. The platform method was, therefore, the most suitable method of storage of yam during rainy season. The higher amount of rotten tissues observed in the pit and heap methods of storage could be due to lack of ventilation and direct contact of the tubers with one another. This causes the stored produce to become heated up and, thus rot. Similar observations were reported by Ofor et al. (2010), that poor ventilation was one of the causes of microbial rot in yam during storage.

Figure 1 shows the variation in wholesome tubers of the genotypes under the different storage methods. The resistance of Kplondzo
TABLE 2. Mean squares from a combined analysis of variance for four yam varieties evaluated for percentage weight of rotten tissue under four storage methods

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Mean squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>% weight of rotten tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>3</td>
<td>322.2</td>
</tr>
<tr>
<td>Genotype</td>
<td>3</td>
<td>2778.7***</td>
</tr>
<tr>
<td>Storage method</td>
<td>3</td>
<td>2140.9**</td>
</tr>
<tr>
<td>Genotype x storage method</td>
<td>3</td>
<td>1004.8ns</td>
</tr>
<tr>
<td>Error</td>
<td>45</td>
<td>349.7</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>46.3</td>
</tr>
</tbody>
</table>

*** = P < 0.001 and ** = P = 0.001

and Olordo yam genotypes and the suitability of the barn and platform methods of storage to reduce the incidence of rot were shown by the significantly higher values. However, the pit method, which recorded the highest incidence of microbial rot, could be used extensively in identification of resistant varieties, during screening.

The interaction of yam genotypes with the methods of storage was not significant (P>0.05) (Table 2). The non-significant genotype x storage method interaction means that similar trends of rot manifest in all the genotypes for the various methods. All genotypes recorded the least rot in the barn method followed by the platform, heap and pit methods. This reduces the need to screen for resistance using different storage methods and thus saving resources and time.

CONCLUSION

Kplondzo and Olordor present evidence of resistance to microbial rot in yam. This attribute could constitute the beginning of more focused effort in breeding for host plant resistance. Also, use of barn and platform methods of storage could help reduce the incidence of internal rot in yam. The non-significance of genotype x storage method interaction in this study should greatly help in yam breeding programmes for continued search for resistance to post-harvest microbial rot in Dioscorea species under all storage methods.

ACKNOWLEDGEMENT

The yam farmers at Yendi in the northern region of Ghana assisted in planting and careful harvesting of the yam genotypes.

REFERENCES

FAO 1998. Food and Agriculture Organization Production Year Book FAO Rome, Italy.

