search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 10, Num. 3, 2007, pp. 473 - 480
Untitled Document

Electronic Journal of Biotechnology, Vol. 10, No. 3, July 15, 2007, pg. 473 - 480

TECHNICAL NOTE

Isolation of simple sequence repeats from groundnut

Chuan Tang Wang*1, Xin Dao Yang2 , Dian Xu Chen3 , Shan Lin Yu4 , Guang Zhen Liu5 , Yue Yi Tang6 , Jian Zhi Xu7

1Shandong Peanut Research Institute Qingdao 266100 P R China Tel: 86 532 87626662 Fax: 86 532 87626832 E-mail: chinapeanut@126.com
2Shandong Peanut Research InstituteQingdao 266100 P R China Tel: 86 532 88433679 Fax: 86 532 87626832 E-mail: smdkrdc@126.com
3Shandong Peanut Research InstituteQingdao 266100 P R China Tel: 86 532 87626723 Fax: 86 532 87626832 E-mail: Chenzhao126@sina.com
4Shandong Peanut Research InstituteQingdao 266100 P R China Tel: 86 532 87626830 Fax: 86 532 87626832 E-mail: rice407@sohu.com
5Shandong Peanut Research InstituteQingdao 266100 P R China Tel: 86 532 88411241 Fax: 86 532 88411241 E-mail: wangzhuo1995@126.com
6Shandong Peanut Research InstituteQingdao 266100 P R China Tel: 86 532 87626662 Fax: 86 532 87626832 E-mail: tangyueyi0597@sina.com
7Shandong Peanut Research Institute Qingdao 266100 P R China Tel: 86 532 88411707 Fax: 86 532 87626832 E-mail: Tsingtao2008@126.com 

*Corresponding author

Financial support: The research was supported in part by grants from China Natural Science Foundation (Grant No. 30300224), China Ministry of Science and Technology (Grant No. 2002CCC03200, Grant No. 2006AA10A114), and New and High Technology Innovation Foundation of Shandong Academy of Agricultural Sciences (Grant No. 2006 YCX013).

Code Number: ej07046

Abstract

SSRs have proved to be the most powerful tool for variety identification in groundnut of similar origin, and have much potential in genetic and breeding studies. To facilitate SSR discovery in groundnut, we proposed a highly simplified SSR isolation protocol based on multiple enzyme digestion/ligation, mixed biotin-labeled probes and streptavidin coated magnetic beads hybridization capture strategy. Of the 272 colonies randomly picked for sequencing, 119 were found to have unique SSR inserts.

Keywords: groundnut, isolation, simple sequence repeat.

Abbreviations:

AFLP: amplified fragment length polymorphism
MW: molecular weight
PCR: polymerase chain reaction
SDS: sodium dodecyl sulfate
SSR: simple sequence repeat

Article

Groundnut or peanut (Arachis hypogaea L.), is an important crop worldwide, distributed across the vast area in tropical, subtropical and temperate zones. It is a valuable source of edible oil and protein for human beings, and of fodder for livestock. In contrast to its apparent diversified variations in traits, its genetic variations at molecular level as detected by RAPD, RFLP, and SSR analysis, proved to be unexpectedly low (Halward et al. 1993; Krishna et al. 2004). In that case, the genetic linkage maps published were constructed using wild Arachis species (Halward et al. 1993; Burow et al. 2001; Moretzsohn et al. 2005).

Several workers (Hopkins et al. 1999; Gao et al. 2003; Ferguson et al. 2004; Moretzsohn et al. 2004) have reported groundnut SSR primers developed either based on traditional library construction and screening or by exploiting an AFLP pre-amplification protocol, with variable rate of success. Yang et al. (2005) identified 24 new groundnut SSR-containing sequences by means of GenBank inquiry. To facilitate SSR marker development in groundnut, we presented a highly simplified SSR DNA isolation protocol with good results.

Materials and Methods

DNA was extracted from leaves of field-grown groundnut plants of 24-3, a hybrid derivative of Arachis hypogaea L. x A. glabrata Benth PI262801, following a modified CTAB method as described earlier (Wang et al. 2004). DNA digestion and ligation mixture (60 µl) containing 10 x NEBuffer4 6 µl, BSA (100x) 0.6 µl, groundnut genomic DNA 0.6 µg, AP11/AP12 adaptor 15 pmol (AP11: 5'→3' CTCTTGCTTAGATCTGGACTA, AP12:5'→3' pTAGTCCAGATCTAAGCAAGAGCACA), 10 mM ATP 6 µl, Dra I (NEB) 0.5 µl, Hae III (NEB) 1 µl, Rsa I (NEB) 0.5 µl, PshA I (NEB) 0.5 µl and T4 DNA Ligase (NEB cat # M0202T) 2 µl, was incubated at 37ºC overnight, and at 80ºC for 20 min to de-activate the enzymes. Ten microliters of digestion and ligation product were pre-amplified using 3 µl of AP11 primer (10 µM) in a volume of 50 µl, and the PCR profile was 72ºC for 2 min, 94ºC for 2 min, and 10 cycles of 1 min at 94ºC, 1 min at 55ºC and 2 min at 72ºC, and a final extension step of 72ºC for 10 min.

The hybridization mixture (30 µl), made up of 100 ng of the pre-amplification product, 6XSSC, 0.1% SDS, and 200 ng each of 5' biotinylated (TA)30, (CA)20, (GA)20, (AGA)15, (TGA)15, (ACA)15 (Sangon Ltd), was subjected to 5 min of denaturation at 95ºC and 1 hr of re-naturation at 60ºC. Two hundred micrograms of streptavidin-coated paramagnetic beads (Promega), previously equilibrated with 6xSSC for 3 times and 6xSSC, 0.1% SDS for 1 time, were then added to the mixture. The mixture was incubated at 60ºC for 15 min with gentle agitation at 5 min intervals. Liquid was removed using a magnetic separation stand (Promega). Beads were washed with gentle agitation with 300 µl of 6xSSC, 0.1% SDS at room temperature for 15 min for 2 times, with pre-warmed 6xSSC, 0.1% SDS (60ºC) at 60ºC for 15 min for 2 times, and then with 300 µl of 6xSSC at room temperature for 15 min for 2 times to remove SDS. After removal of final wash, captured DNAs were eluted from the beads with addition of 200 µl of T.E preheated to 95ºC, gentle flicking of the Eppendorf tube, and incubation at 95ºC for 10 min. With the aid of the magnetic stand, eluted DNAs in T.E buffer were quickly transferred to an aseptic tube in ice bath, and then desalted at 4ºC using a Millipore Microcon YM-100 column according to producer's recommendation. The probes in the captured DNAs were also removed during this process, so were the ssDNAs with MW lower than 300 nt.

The resultant DNAs were amplified using primer AP11, purified and ligated into a pCF-T vector (Tiangen Biotech). Chemically competent cells of TOPO 10 were utilized in heat-shock transformation. Length of inserts was determined using a colony PCR procedure involving heat treatment of white colonies with TTE buffer. DNA sequence was analyzed on an ABI 3730XL sequencer using the M13 forward/reverse primer. After removal of the sequence of vector and adaptor and exclusion of redundant sequences, SSRs in the inserts were identified by exploiting the SSR Hunter and Tandem Repeat Finder search tools.

Results and Discussion

Agarose electrophoresis of pre-amplification product showed that multiple enzyme digestion/ligation procedure produced DNA fragments of expected size (200-around 1000 bp) (Figure 1). PCR product of captured DNAs was in the similar MW range (Figure 1). Sixty colonies were randomly picked for colony PCR using AP11 primer. All of them harbouring plasmids with inserts of expected size (Figure 1 and Figure 2).

Plasmids were extracted from the colonies and inserts sequenced using M13 forward/reverse primer. Of the 272 colonies for sequencing, 259 were non-redundancy sequences, and 119 were found to have unique SSR inserts (Table 1). All of the six probes used could be directly related to these sequences; the (cgc) 4 SSR was an only exceptional case. The ratio of non-redundant SSR inserts was 43.7%. Although it may not be the highest in groundnut SSR isolation, due to the judicious choice of restriction enzymes, and a probe removal step for uprooting probe-primed PCR, most of these SSRs identified were found to possess flanking sequences needed for primer design; we were able to design 123 “good” primer pairs for further evaluation. In Hopkins's report, 66 (55.0%) out of the 120 sequenced “positive” clones had SSRs, but only 26 (21.7%) primer pairs could be designed, where both the occurrence of short tandem repeats (<6 core unit) and the close proximity of the SSR to the end of insert DNA limited the ability to design primers for the majority of the SSRs identified (Hopkins et al. 1999). Gao et al. (2003) identified 14 (5.5%) unique SSR-containing sequences in 256 clones. He et al. (2003) sequenced 401 randomly picked clones resulting from AFLP pre-amplification based protocol, 83 (20.7%) of which were unique SSRs, and 56 (14.0%) primer pairs were designed. Moretzsohn et al. (2004) pre-screened the clones before sequencing using SSR-anchored PCR strategy and found 162 of the 750 clones had SSRs. There were 91 unique sequences, but only 67 were suitable for primer design (41.4% of positive clones). Ferguson et al. (2004) identified 348 (21.3%) SSRs by sequencing 1,627 clones, merely 226 (13.9%) primers could be designed.

Table 1. Property of the newly identified groundnut SSRs.


Sequence ID

Repeat
motifs

Type

Primer ID

Primer sequence
(Foward)

Primer sequence
(Reverse)

CTW-06

(ct)27

perfect

S-01

TGGACTAGACAAGGAACAACCA

GAGCCATGAGCACACAACAC

CTW-06

(ct)4

perfect

 

 

 

CTW-07

(gaa)5

perfect

S-02

TTGTTGCTATTTAGGGTGATTGA

GTGGGACAAGGCTTTGTTGT

CTW-07

(gaa)5

perfect

 

 

 

CTW-07

(aac)5

perfect

 

 

 

CTW-10

(tct)5

perfect

S-03

GCACCAATTTTGTCCCTGAT

AAGGGGTTTGCACGTAAATG

CTW-11

(ca)10(ct)8

compound

S-04

GAACGCCAGTTTACGTCGTC

TTGGGACACTTACCGAAGAGTT

CTW-11

(ct)4

perfect

 

 

 

CTW-13

(ac)53

perfect

S-05

CCGGCTAGAGAATACACACACA

CCGGCTAGAGAATACACACACA

CTW-13

(ca)4

perfect

 

 

 

CTW-13

(ca)4

perfect

 

 

 

CTW-14

(ac)84

perfect

S-06

CCGGCTAGAGAATACACACACA

TCCTCCTTCCTCCTTGAACA

CTW-15

(tct)5

perfect

S-07

GCACCAATTTTGTCCCTGAT

CAGAAGGGGTTTGCACCTAA

CTW-16

(ac)12

perfect

S-08

AAGTCCAAAATGCATGCTCA

GGCTCTGTGTGGTAGGGTGT

CTW-18

(ag)5

perfect

S-09

CGCTGTCCTTATCGAACCAT

CTCTCACTCGCGCTTTCTCT

CTW-18

(ca)4

perfect

 

 

 

CTW-18

(ga)4

perfect

 

 

 

CTW-18

(ga)4

perfect

 

 

 

CTW-19

(gt)32

perfect

S-10

CAAGCCAAAAGTGGAAAACC

TCCTTTTGCTAATGCGGTCT

CTW-19

(gt)4

perfect

 

 

 

CTW-19

(ct)5

perfect

 

 

 

CTW-20

(ct)4tt(ct)9

imperfect

S-11

ATGACGGCAGTAGCAGAAGC

TTGAGGAGAAGACGCTGTTG

CTW-20

(tc)4

perfect

 

 

 

CTW-20

(ct)4

perfect

 

 

 

CTW-21

(caa)3cca(caa)2

imperfect

S-12

TCATTGACCTAGCCGAATCC

GAGGGACCAATTGTTGGTTG

CTW-23

(aac)5

perfect

S-13

TTGTTGCTATTTAGGGTGATTGA

CGTCGTTTGATTCATGTAGCC

CTW-23

(gaa)5

perfect

 

 

 

CTW-23

(gaa)5

perfect

 

 

 

CTW-25

(ca)12

perfect

S-14

AGGCAAACCACTGCAAGAGT

CGCTTCCCTGGGATACTTAG

CTW-26

(ctt)5

perfect

S-15

TGAACGAAAAATGCTAATGTGG

CGCAGAGACGTGTTGAAGAA

CTW-26

(ctt)5

perfect

 

 

 

CTW-26

(ctt)4

perfect

 

 

 

CTW-28

(tc)9

perfect

S-16

TGGTAGTGGAGTCAGAGTGTGTG

GTTGCATTGCCCAACTCTTT

CTW-28

(gt)4

perfect

 

 

 

CTW-29

(ct)16

perfect

S-17

CATTGGAAAGATCCGACGAT

GTTGCAACAACGACGATGG

CTW-29

(ct)4

perfect

 

 

 

CTW-31

(ct)5

perfect

S-18

CAATAAATTCGTCGTAT

GAGAGAAGAGAAGGTTAGAGA

CTW-33

(ct)24

perfect

S-19

GCTCCACTAGTGCCGAAATC

CAGACACCCGGAGGCTTA

CTW-36

(caa)5

perfect

S-20

CACGAACAGCCACTCAAAGA

CTCTGGGGGACTAGCTGTTG

CTW-39

(ct)15

perfect

S-21

AGTCCTACTTGTGGGGGTTG

TCCCTTTTGCAGTGAAATCC

CTW-41

(ac)8(at)5

compound

S-22

CGTGACAAACATGTGCTGCT

TTTTGGAATCTGTTTATGGGAAA

CTW-51

(tgt)4

perfect

S-23

CTGGAAGTGGTCCTGTTGGT

GCTGCTCCTGTCTCTGGAAT

CTW-52

(ga)22

perfect

S-24

GGCAATGCACACGCTACTCT

CGTGAGGCGTGAGAGTTCAT

CTW-54

(aga)7

perfect

S-25

GCTATGCTTTTACCACACCAAA

CCATTCATGGTCATCCCTTC

CTW-54

(ag)4

perfect

 

 

 

CTW-56

(aac)4

perfect

S-26

ACATGAGTGCCCAACTAGCC

TGCAGAGCTTCAACAACCAC

CTW-66

(ca)4

perfect

S-27

ATCCGGCTCACAGTTCAATC

GCCAAGGCTGAAAAGAGTTG

CTW-68

(ttg)4

perfect

S-28

TTGCAAGATGTGCATCAAAA

TGACAAACCAACAAACGACA

CTW-68

(gt)4

perfect

 

 

 

CTW NEW_67

(ttc)15

Perfect

S-29

CACCGCCGCCCGTTTCTTCTCCT

GGGCAACGGCTCGACGGTGGTATC

CTW NEW_67

(cct)5

perfect

S-30

CTTCTTCTTCTTCCCGCCACC

GGCGGGCGACGGGCAAC

CTW NEW_124

(tc)3tt(tc)10tt(tc)4

imperfect

S-31

GGCGGCGATGTAGAACCCTCCAGTAG

ACCGCCATCGCCATCGTTGTTGT

CTW NEW_174

(ct)2cc(ct)19

imperfect

S-32

GCATTCGCGCAGCAACC

CCAGAGTAGAGCGGCAGTCC

CTW NEW_270

(caa)4

perfect

S-33

AGATCGCCGCCCTTACCAAAACCT

AGAAAGCCCCAAAATCGTGAGTAACAT

CTW NEW_263

(tgt)4

perfect

S-34

ACCTTCTTCCGCGCTTGTTTCAG

TCCCAGCTCCGATCCTCATACTTCA

CTW NEW_74

(ga)5

perfect

S-35

GCGGTTGCCTGGGTCGTC

CCGCAATGGAAGTGGGAAAGTAT

CTW NEW_227

(tct)6

perfect

S-36

GGCAACGCGTGGTAGCAGTG

GAGTGAGTGAACCAGAAGGAAGGA

CTW NEW_33

(gt)8

perfect

S-37

GACCGCGGCTCCACTTCTTTCTCT

ACATTCCCCTTTCACCCCTCACAAC

CTW NEW_51

(ga)17

perfect

S-38

GGCAGCGAAGCACCCATTGTTA

GTAGGGTTGCGTTTCGTTTTCTTATCG

CTW NEW_72

(aca)4

perfect

S-39

TCCAAAATCAACCAGAAAGCAGAAGCAGATG

AGGAAGAGAAGCGGAGAGGGAGAGAAG

CTW NEW_204

(ca)7

perfect

S-40

ACCCAACACTAGCCGCCACTGA

GCAACGCCTCCTCCTCTTCCTCTA

CTW NEW_16

(aac)4

perfect

S-41

AGAGTATGCGGAATTTGTGCTGAT

CCCGTTGTTGGTTGTGATGG

CTW NEW_209

(caa)4

perfect

S-42

GAGGGGGCGAACGTTGGACTTG

GCCGGAGCACTTGAGCATTTTT

CTW NEW_7

(aga)6

perfect

S-43

ATTCTTTGGACTCGGGTTCATACTTTG

ACACCATCCCTCACTCTCCTCCATA

CTW NEW_197

(tg)17(ag)17

compound

S-44

GGTGTTGAGGGATGGTTGTTCTAA

CTTTCCCGCCTCTCCCTCTC

CTW NEW_62

(tga)5

perfect

S-45

AGGTGTTGTGGCATTGTTCTTCAT

CGGCGGTAGCGGTAGCGGTTAT

CTW NEW_77

(gaa)8

perfect

S-46

ATGGCGAATCGGAGGGTAGGTT

TCCAATCGTGCGTTTCAATCATCT

CTW NEW_19

(gtt)5

perfect

S-47

ATTCTGAGGCTGCTTCCCAAACT

CTGCCATGTAAGCCGTGAATAAG

CTW NEW_86

(gtt)5

perfect

S-48

ATTCTGAGGCTGCTTCCCAAACT

CTGCCATGTAAGCCGTGAATAAG

CTW NEW_36

(gt)11(ga)7ggaggaa(ga)6

compound

S-49

GGCAGCGAAGCACCCATTGT

CGTTTCGTTTTCTTATCGCACTTC

CTW NEW_241

(aac)4

perfect

S-50

ATGCACGCAACTACAGGAAGATAAC

TGCGCAAGAGAACGGAACAT

CTW NEW_71

(tc)7

perfect

S-51

CCCAATTCGCATAAAAACAGAGAC

CGAGCCGCAATCCAACACT

CTW NEW_74

(ga)5

perfect

S-52

CCCTGAGAATGAAAGAAAGAAACA

CAACCGCAGCGACGATAGATG

CTW NEW_92

(tct)6

perfect

S-53

CACACCCATCCATCTCCTCCATA

TGTCTTTGTTGCTCCTCCCTCATT

CTW NEW_234

(ca)5(ga)35

compound

S-54

GTGTGCCATGTAGGTGTGACTG

GTTTGCCCTCTTGTTTTCTCC

CTW NEW_37

(ag)5

perfect

S-55

ACCCCCAACTGCACTACTATTCATTTT

CGACGCGGCGAGGCTTCC

CTW NEW_202

(tc)16

perfect

S-56

CATAGGCGTCCCATTGCTTACAG

GATTACGCGCTCTTTCATTTG

CTW NEW_252

(ttg)9

perfect

S-57

AGGGCGAAAGGCAGAGGAAGA

AAAGGGGTGAGACAGCCAATAACAT

CTW NEW_231

(tc)5

perfect

S-58

GAGCGAAAGAGAACGAGACAACAA

TCGGGGAGGATCAACCAAATAG

CTW NEW_62

(gtt)4

perfect

S-59

TTGGTGGAAGCCCTAGAGTGAGTGAA

ATGGAAATGAAGCCGATAAGAGA

CTW NEW_92

(tc)5

perfect

S-60

TTGGTGCAGGGATGTAAATG

ATATGGAGGAGATGGATGGGTGTG

CTW NEW_137

(aac)4

perfect

S-61

GAGGAGGCAGAGATAATCAGG

GAGAGGTCTGCTGTTGGGTAT

CTW NEW_166

(tg)6

perfect

S-62

CAAGTGGGGGGTTTATGGTG

CCCCCTCCATCACCCCT

CTW NEW_200

(ag)13a(ag)2

imperfect

S-63

CACCGTGGTATGATCGTTTCTTTT

GTTCGCGTGGGATTGTTTGTGT

CTW NEW_51

(gt)11(ga)7gtgagga(ag)6

compound

S-64

GGCAGCGAAGCACCCATTGT

TCCTTCGACCCTATCTATCAGTATCAC

CTW NEW_67

(ctt)9

perfect

S-65

CGATACCACCGTCGAGC

CAAGAACCCAGAATCAGGAAG

CTW NEW_130

(tg)15

perfect

S-66

ACCCCCATTGAGCGATTTG

AGTCCCATTGCCTTTCTTCTGTAT

CTW NEW_157

(aac)6

perfect

S-67

TCTCCTTCCCGAACAACCCTATTA

ATTGTTGACTTGGCTTCGTTCCTA

CTW NEW_137

(aac)6

perfect

S-68

AATCAAGGTGGCAACTACAGC

AGACACTATACTTGCAACGAGGAT

CTW NEW_17

(ttc)4

perfect

S-69

GGGGAGTCGTGTCAAGCCATTA

ACCCCAAACCCAACCCTCAC

CTW NEW_43

(ttg)5

perfect

S-70

CCTTTCCCATTCCATTAGC

GTCCGAGTTGAGGAACAACAA

CTW NEW_88

(tct)7

perfect

S-71

ACCTCTTTCCCTCTCCTCCATA

TTCCTTGCCTCTGTTGTTTGAT

CTW NEW_139

(ag)6

perfect

S-72

TACAGCCCAAATGGAATGAGAA

GAGTTGGGAAGAAAGGATGAAGAT

CTW NEW_68

(aag)8

perfect

S-73

AGTCCACTGAACCGAACACCAATC

TCCCTACCACCGAACGAAACAAT

CTW NEW_20

(aac)9

perfect

S-74

GCACGCGCTCAGGACAAAT

AGGGCGAAAGGCAGAGGAA

CTW NEW_249

(ttc)4

perfect

S-75

ACACCCTCCTCAACATCAAAT

ATACCCAAGCGAAACAAGAATC

CTW NEW_36

(ga)18

perfect

S-76

ATACTGATAGATAGGGTCGAAGGAGAG

CAACGAAAGAAAAATAAGGACATAGTG

CTW NEW_194

(ct)9

perfect

S-77

CACCCCTCACTACAAGAAAAATAC

ATGGCGGAGAAGAGGGAGGAG

CTW NEW_199

(caa)6taa(caa)4

Imperfect

S-78

TCCAATTCAATCTCACTAAAAACT

CAAAGGGGAGCACGAACATAAG

CTW NEW_193

(ttc)5

perfect

S-79

AAACCACGCAGTCCGAATACA

CTTGATGGGCTTTGGAGATAA

CTW NEW_202

(tct)6

perfect

S-80

GGCGTCCCATTGCTTAC

AGAATGCGTTGATGTTATGAA

CTW NEW_119

(tc)26

perfect

S-81

GCTTCAGTGGTGGGCTCAT

TATCATAGTAAAAAGGTGGGAACAAT

CTW NEW_219

(tgt)4

perfect

S-82

TTGCAAAGTAGCGTTCAGAC

CATGGATGGCAGGACAAT

CTW NEW_271

(ca)15ta(ca)11

Imperfect

S-83

CTTGAACTTATTTTTGGTGGGTGAAC

CAAGGGAGAATGAAGAATGCTAAG

CTW NEW_274

(ga)9

perfect

S-84

CAGCCAATATGTCACAACCCTAAT

CTCCCACTACAAATCTCCAATCAAT

CTW NEW_178

(ct)12cc(ct)14

Imperfect

S-85

AAACTATCACCGACAAAAA

AGAGACATAAGCCGAGAGG

CTW NEW_32

(ttc)14

perfect

S-86

TCCATGAGGGGTTATAGGTGTTT

GGGTGTATTTCTGAAGTTCCATTATC

CTW NEW_67

(ggt)8

perfect

S-87

TCTGAGTTCTGGCTTTTGAT

CACCACCACCATCATCATCAT

CTW NEW_128

(ag)43

perfect

S-88

TCAAAGAAGCAATAAAAATC

CTCCACCGGCAAGCACCTC

CTW NEW_82

(ct)19

perfect

S-89

ATCTATGGCCGGGTTGGTT

AGGTGGTGGGTAGTGCTTCTG

CTW NEW_231

(ttc)11

perfect

S-90

GAGAGCGAAAGAGAACGAGAC

GAATTGGAATCCATAGCCAT

CTW NEW_162

(ttc)8(tcc)2(ttc)4

compound

S-91

TGAGGGCAGGGGAAGAT

CGTCGGTGGTTGAAGCAGAG

CTW NEW_219

(tgt)4

perfect

S-92

ATTGGCAGATGAAGAAGGA

GGGAAATCAGAGGTGGAATAA

CTW NEW_38

(tg)10(ag)14

compound

S-93

TTGGGGAAATACAGAATAACG

CTCCCACATCCCCACCAT

CTW NEW_185

(ag)25

perfect

S-94

TTCCCAAAAATAGTCAACCA

TCTTCCTCTGCCTTTCATCCA

CTW NEW_40

(ca)5

perfect

S-95

AACCCCAACCATCAAACAAACA

ATGGTATCACTGGGAAATG

CTW NEW_193

(tct)4

perfect

S-96

ATACACATTCCTCTCCATCTCCT

TTTTTCTTCCCTTTCTTCTTTCTA

CTW NEW_206

(ttg)13

perfect

S-97

GAATCGCGTCTCAGGTG

TATTGCTTACGATTATTTTGT

CTW NEW_225

(Ac)7

perfect

S-98

TTAATGAACCCAAATACACA

AGCCAAAACCCTAAAAACTA

CTW NEW_162

(ttc)7

perfect

S-99

GGGCAGGGGAAGATCAATA

ATGAGGGTGAATTGGAATTGG

CTW NEW_74

(ac)5

perfect

S-100

AAGCGCCATATGTGTTTGA

CCCGTCTTGGCTTTCTTCT

CTW NEW_220

(tca)4

perfect

S-101

AGTGCGTTTGGCTCATCA

ATTTCGTTCATTTAGTCCATAGA

CTW NEW_67

(tga)5

perfect

S-102

TCCTGATTCTGGGTTCTTGA

CCATCCACTGCCACTCCAT

CTW NEW_152

(gt)14

perfect

S-103

ATGTGGGAATTATGGGTAGC

ATGGCGTGACAAAAGAATC

CTW NEW_253

(ttg)8

perfect

S-104

GAATCGCGTCTCAGGTGGTTT

TTAGATGAGTATGAAGAGATTAT

CTW NEW_211

(ag)9

perfect

S-105

AAGCTCATTTCATCACAA

CCACAAACGGCTCATCAATC

CTW NEW_78

(gaa)11

perfect

S-106

GCCAGCATAGAAGCATAATAACA

GAGTAATAGTGAATCAATGAGAAGAGG

CTW NEW_277

(gaa)6

perfect

S-107

TTCAATAATCCAAACCTCATCA

CTGTTTGCGTTTTTCTACTCTG

CTW NEW_177

(tc)14(ac)15

compound

S-108

GCTTACATTACACGTCATCTC

CCGAACTTACAGTTAGGAG

CTW NEW_27

(ag)21

perfect

S-109

AAGGGAGCACAATCATA

GAGCACGAGTTCATACAC

CTW NEW_9

(aac)37

perfect

S-110

TTCTAGTAGTAAAAATAAAAACAC

GTCAAAGGGAGGCACGAACATAAGT

CTW NEW_136

(gt)20

perfect

S-111

TGAAAATTAAAACTACCAACTACA

TGCCCCAAGATAACACAAT

CTW NEW_254

(atg)4

perfect

S-112

ACTGCTAGCGTTGTTTTCTTCC

CATTACACCTTCACCAACACCA

CTW NEW_78

(tc)9

perfect

S-113

TTGCATGTAGGAAAGAAAGATT

TTGGATGTGGTGGTGATGT

CTW NEW_133

(ct)12

perfect

S-114

AAGAGACGAAAGTGAGTTAGC

GGGAGCATGTTTAGGGAGAC

CTW NEW_182

(cca)5

perfect

S-115

GGTAATATGCCTTGGTGAC

TTCTTGATAATTCTGTGGAT

CTW NEW_217

(ttc)4

perfect

S-116

GATTTGTTTTCTTCTTCGTTTTT

CATAATCCACTTCGCCCTAAT

CTW NEW_266

(ttg)8

perfect

S-117

GGATAAAATAAGGAATGA

TTGCAAGTAAGTAATACAA

CTW NEW_78

(aat)6

perfect

S-118

TATATGATGCTTGATTGAGACT

CATGTAGAAGGCTTGGAGGGTAT

CTW NEW_217

(ttc)4

perfect

S-119

CTTCTTCGTTCTTCTTCC

ACGCGTTAGTCTCACAGTCA

CTW NEW_35

(tc)25

perfect

S-120

TTCAAACTACATCTCAAACTAT

TGTGCCAGGACCCAAAAT

CTW NEW_8

(aca)4

perfect

S-121

TTCTCAAAGTCTGTCTGG

TTTAGCAATTGGTTCTTA

CTW NEW_32

(gaa)4

perfect

S-122

TTTTTCGATTTTCATGGTTTCTG

TTTCTCTTTCTCCTCATCTTCTGC

CTW NEW_12

(ct)11

perfect

S-123

GTATGGTGACTGTAGTTCTC

AGTGACCAAAATAGAAGC

CTW NEW_103

(tg)12

perfect

 

 

 

CTW NEW_104

(tgt)15

perfect

 

 

 

CTW NEW_12

(cgc)4

perfect

 

 

 

CTW NEW_171

(aac)6

perfect

 

 

 

CTW NEW_184

(tc)24

perfect

 

 

 

CTW NEW_190

(ttg)7

perfect

 

 

 

CTW NEW_194

(tc)8

perfect

 

 

 

CTW NEW_215

(gga)4

perfect

 

 

 

CTW NEW_222

(ct)24

perfect

 

 

 

CTW NEW_223

(tg)35

perfect

 

 

 

CTW NEW_227

(ct)21

perfect

 

 

 

CTW NEW_23

(ca)28

perfect

 

 

 

CTW NEW_257

(tg)26

perfect

 

 

 

CTW NEW_259

(tg)11(ag)13tg(ag)10

compound

 

 

 

CTW NEW_277

(gaa)4gga
(gaa)gag
(gaa)6cgc
(gaa)taga
(gaa)40

imperfect

  

 

 

CTW NEW_52

(tg)51

perfect

 

 

 

CTW NEW_58

(ct)31

perfect

 

 

 

CTW NEW_67

(tga)4(tgg)7

compound

 

 

 

CTW NEW_68

(agg)4

perfect

 

 

 

CTW NEW_85

(tg)7

perfect

 

 

 

CTW NEW_97

(tc)13

perfect

 

 

 

CTW NEW_98

(tg)12

perfect

 

  

  

In contrast to previous reported SSR isolation protocols, our simplified protocol utilized 4 enzymes to cut groundnut DNA into ideally sized fragments which were ligated to adaptors in a single tube. The present SSR enrichment protocol adopted a multiple enzyme digestion/ligation procedure apparently similar to AFLP pre-amplification based protocol, but the product in our protocol was in the range of 200-1000 bp, whereas in groundnut EcoR I/Mse I AFLP protocol, the pre-amplification product was generally between 70 and 500 bp. Too short DNA sequences in the latter case may increase the possibility of lack of adequate flanking sequences. With the advance in sequencing facility and technology, the number of base pairs of DNA readable in a single sequencing reaction tends to be longer and longer, and DNA inserts of ~1000 bp do not necessarily mean more cost.

It can be seen from the Figure 3 that ct/ag repeat motif had the highest frequencies, followed by ga/tc, ttc/gaa and ca/tg. Indeed, ct/ag repeat was reported to be rich in other plant species, and was the most frequently dispersed SSRs of groundnut in He's report (He et al. 2003). The results to some extent may reveal the relative abundance of different repeat motifs as well as the ease of capture.

The copy number of the SSR core sequences was also highly variable. SSRs, even for 3-nucleotide core sequences, with copy number higher than 40 were not strange. The number of repeats may exceed 80.

In the present study, of the 123 newly designed primer pairs tested in 12 peanut varieties/lines mainly bred in Shandong province, China, only 44 (35.8%) produced polymorphic bands (Huang et al. 2006). Despite the fact that several hundreds of SSRs have been isolated from groundnut, only a small portion of them showed polymorphic in the cultivated groundnut, far from the need for map construction let alone QTL mapping. Strengthening groundnut SSR development is absolutely necessary. Compared to previous protocols reported in groundnut, the present protocol was efficient, time-saving and easy to follow. In all previous reports without exceptions, the cultivated groundnut was the only plant material used to isolate groundnut SSRs; in this study, a hybrid derivative was exploited instead. Considering the polyploidy nature of the groundnut crop and frequent occurrence of multiple banding patterns in groundnut SSR analysis, use of the inter specific hybrid derived material makes it possible to isolate SSRs originated from both cultivated and wild groundnut.

References
  • BUROW, Mark D.; SIMPSON, Charles E.; STARR, James L. and PATERSON, Andrew H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic species. Genetics, October 2001, vol. 159, no. 2, p. 823-837.
  • FERGUSON, M.E.; BUROW, M.D.; SCHULZE, S.R.; BRAMEL, P.J.; PATERSON, A.H.; KRESOVICH, S. and MITCHELL, S. Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, April 2004, vol. 108, no. 6, p. 1064-1070. [CrossRef]
  • GAO, G.O.; HE, G.-H. and LI, Y.-R. Microsatellite enrichment from AFLP fragments by magnetic beads. Acta Botanica Sinica, November 2003, vol. 45, no. 11, p. 1266-1269.
  • HALWARD, T.; STALKER, H.T. and KOCHERT, G. Development of an RFLP linkage map in diploid peanut species. Theoretical and Applied Genetics, November 1993, vol. 87, no. 3, p. 379-384. [CrossRef]
  • HE, Guohao; MENG, Ronghua; NEWMAN, Melanie; GAO, Guoqing; PITTMAN, Roy N. and PRAKASH, C.S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, April 2003, vol. 3, p. 3. [CrossRef]
  • HOPKINS, M.S.; MITCHELL, S.E.; CASA, A.M.; WANG, T.; DEAN, R.E.; KOCHERT, G.D. and KRESOVICH, S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Science, July-August 1999, vol. 39, no. 4, p. 1243-1247.
  • HUANG, Xinyang; WANG, Chuantang; YANG, Xindao and XU, Jianzhi. Analysis of DNA polymorphism in peanut cultivars using new microsatellite markers. Chinese Agricultural Science Bulletin, 2006, vol. 22, no. 10, p. 44-48.
  • KRISHNA, Girish Kumar; ZHANG, Jinfa F.; BUROW, Mark; PITTMAN, Roy N.; LU, Yingzhi; PUPPALA, Naveen and DELIKOSTADINOV, Stanko G. Genetic diversity analysis in Valencia peanut (Arachis hypogaea L.) using microsatellite markers. Cellular and Molecular Biology Letters, 2004, vol. 9, no. 4a, p. 685-697.
  • MORETZSOHN, Marcio de Carvalho; HOPKINS, Mark S.; MITCHELL, Sharon E.; KRESOVICH, Stephen; VALLS; Jose Francisco M. and FERREIRA, Marcio Elias. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biology, July 2004, vol. 4, p. 11. [CrossRef]
  • MORETZSOHN, M.C.; LEOI, L.; PROITE, K.; GUIMARÃES, P.M.; LEAL-BERTIOLI, S.C.; GIMENES, M.A.; MARTINS, W.S.; VALLS, J.F.M.; GRATTAPAGLIA, D. and BERTIOLI, D.J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, October 2005, vol. 111, no. 6, p. 1060-1071. [CrossRef]
  • WANG, Chuan-Tang; YANG, Xin-Dao; CHEN, Dian-Xu. DNA molecular markers in peanut. I. Developing a technical protocol for peanut AFLP assays and screening for highly polymorphic parents for mapping. Journal of Peanut Science, 2004, vol. 33, no. 4. p. 5-10.
  • YANG, Xin-Dao, WANG, Chuan-Tang; CHEN, Dian-Xu; ZHANG, Jian-Cheng; XU, Jian-Zhi and LIU, Guang-Zhen. Simple sequence repeats in cultivated peanut as reveals by GenBank inquiry. Journal of Peanut Science, 2005, vol. 34, no. 2, p. 14-16.

Note: Electronic Journal of Biotechnology is not responsible if on-line references cited on manuscripts are not available any more after the date of publication.
Supported by UNESCO / MIRCEN network

© 2007 by Pontificia Universidad Católica de Valparaíso -- Chile

The following images related to this document are available:

Photo images

[ej07046f3.jpg] [ej07046f1.jpg] [ej07046f2.jpg]
Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil