search
for
 About Bioline  All Journals  Testimonials  Membership  News


Journal of Postgraduate Medicine
Medknow Publications and Staff Society of Seth GS Medical College and KEM Hospital, Mumbai, India
ISSN: 0022-3859 EISSN: 0972-2823
Vol. 48, Num. 1, 2002, pp. 64-70

Journal of Postgraduate Medicine, Vol. 48, Issue 1, 2002 pp. 64-70

Prevention of Postoperative Acute Renal Failure

Reddy VG

Department of Anaesthesia and Critical Care, College of Medicine, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
Address for Correspondence: Venu Gopal Reddy, MD, Department of Anaesthesia and ICU, College of Medicine, PO Box 35, PC 123-SQU, Muscat, Sultanate of Oman E-mail: gowri@omantel.net.om

Code Number: jp02020

Abstract:

Postoperative acute renal failure (PO-ARF) is a serious complication resulting in a prolonged stay and high mortality. Patients may be at risk for this problem because of an underlying medical illness, nature of surgery, nephrotoxin exposure, or combinations of these factors. An increase in the intra abdominal pressure above 20-mm Hg is associated with an increase in the incidence of PO-ARF. Based on many clinical studies in high-risk surgical patients and patients undergoing renal transplantation, the only proven management strategies for prevention of PO-ARF are adequate volume expansion and avoidance of hypovolemia. Drugs known to be nephrotoxic should be avoided or used with caution. Three main pharmacological agents namely mannitol, frusemide and dopamine have been extensively tried in the prevention of PO-ARF. Mannitol has proven of value only in the presence of adequate volume expansion in attenuating renal dysfunction in transplant patients. Frusemide converts oliguric renal failure to non-oliguric renal failure. The bulk of the data, including that from prospective studies indicate dopamine is only a diuretic. Fenoldopam, a dopamine analogue, has shown early promise in reports. Calcium channel blockers have not been shown to improve the outcome in renal transplantation or help in the prevention of contrast induced nephropathy. Atrial natriuretic peptide has not been proven to be of benefit in established renal failure and its role in prevention has not been assessed.

Key Words: Renal failure, postoperative period, drug therapy, diagnosis, dopamine, mannitol, frusemide.

Postoperative acute renal failure (PO-ARF) has been recognised as a complication of major vascular, cardiac and high-risk abdominal surgery. This review focuses on pathophysiology, predisposing risk factors, nephrotoxic drugs, role of increased abdominal pressure, fluid management, limitation of biochemical markers in identifying renal insufficiency and evidence based pharmacological support in the prevention of PO-ARF.

This paper reviewed in humans the prevention of PO-ARF in randomised controlled trials and is based on a computerised MEDLINE literature search in English language journals from January 1970-October 2001. All review articles on PO-ARF and the biochemical investigations in identifying renal failure published in peer-reviewed journals from 1985_2001 were included in the literature search.

Incidence

Two main reasons for the varying incidence of PO-ARF are the variable definitions of acute renal failure (ARF) and the varying nature of surgery.1 Depending on the definition, the preoperative renal function and the peroperative complications, the incidence of PO-ARF varies from 1.1% to 17%. 2,3 Aortic surgery, coronary artery bypass surgery, renal and liver transplantation and surgery in the presence of obstructive jaundice are known to be independent risk factors for the development of PO-ARF.4, 5

Mortality

Despite advances in perioperative care and the advent of dialysis, the mortality rate exceeds 50% and depends upon the kind of surgery. In surgery for thoracoabdominal aneurysm, the mortality is 67% in patients who developed PO-ARF6 compared to 8.7% in those who did not do so.7 Chertow8 reported a mortality of 63% in post cardiac surgical patients with dialysis compared to 4.3% in those with intact renal function. A rise in the serum creatinine by 20% at the time of admission to the intensive care unit carried a mortality of 67% compared to 19.4% in controls.1, 2

Pathophysiology

Kidneys receive 25% of the cardiac output (CO) but consume only 10% of total body oxygen uptake.9 Because of autoregulation, the glomerular filtration rate (GFR) parallels the renal blood flow (RBF) over a wide range. Nearly 90-95% of the blood flows to the cortex while the medulla receives only 5-10%, resulting in a regional PaO2 of 10-mm Hg in the medulla compared to 50 mmHg in the cortex.9 As a function of the active mechanisms for solute and water reabsorption, nearly 90% of the renal oxygen extraction occurs in the medulla. This explains the ease with which medullary hypoxia can develop.

Glomerular ultrafiltration depends upon a balance between the afferent and efferent arteriolar tone, which is influenced, by a balance between vasodilators and vasoconstrictors. Catecholamines, renin, angiotensin, platelet activating factor, nitric oxide, prostaglandins and adenosine are all known to affect the vascular tone.10 During hypoxia the medullary blood flow is augmented by the release of prostaglandin E2 and nitric oxide. The fall in the RBF is accompanied by an increase in the sodium reabsorption, which is an active process, thus increasing the oxygen demand in the medulla.10 Diabetic patients have a ten fold greater risk for renal deterioration in the presence of hypovolaemia.11

The pathogenesis of PO-ARF depends upon the nature of surgery, preoperative and intraoperative hemodynamics and renal conditions. All intravenous or volatile induction agents affect renal function by decreasing CO and blood pressure (BP). Extradural block up to the level of T4 reduces sympathetic tone in the kidneys, resulting in a decrease in the RBF and GFR. Mechanical ventilation with positive pressure also decreases RBF.12 Major surgery with extensive third space fluid loss can lead to hypovolaemia and subsequent renal hypoperfusion.4

Strategies to Prevent PO-ARF

The successful prevention of PO-ARF depends on identification of patients who are at risk for developing PO-ARF;13-15 maintenance of adequate intravascular volume; and pharmacological prophylaxis.

Identifying Risk Factors

Prevention of PO-ARF depends on identifying risk factors, avoiding nephrotoxic drugs and limiting increases in abdominal pressure. The incidence of PO-ARF is directly proportional to the number of risk factors11 as shown in Table 1. In cardiopulmonary surgery the four most important independent risk factors for PO-ARF are old age, preoperative renal insufficiency, a cardiopulmonary bypass time of greater than 140 min and postoperative hypotension.8 Known nephrotoxic drugs which are commonly used in the perioperative and postoperative period are shown in Table 2.14

Increased Intra-abdominal Pressure

The normal intra-abdominal pressure (IAP) has a wide range from 0-17 mm Hg with a mean of 6.5-mm Hg. The IAP can increase due to intra-abdominal bleeding, intestinal disten sion, peritonitis, paralytic ileus and ascites. A rise above 18 mm Hg is considered abnormal.16,17 In experimental studies an IAP of 20 mmHg resulted in a 75% reduction in GFR and that of 40 mmHg in anuria.16,17 The reduction in GFR was refractory to both volume loading and increases in cardiac output suggesting that the reduction in RBF is of lesser importance than the increase in renal vein pressures.16 Although ureteric compression has been considered as a possible mechanism, studies do not support this hypothesis.16,17 Improvement in renal function occurs only after abdominal decompression.19 The probable mechanisms by which raised IAP causes a reduction in UO are:

  1. Reduced venous return and CO causing decreased RBF.
  2. Compression of the renal vein with reflex renal artery vasoconstriction, resulting in a reduction in RBF and UO.
  3. Elevation of the renal tubular pressure: The filtration gradient across the glomerular capillary membrane is the difference between the glomerular pressure and the proximal renal tubular pressure. Proximal renal tubular pressure approximates IAP. Hence an increase in IAP may decrease filtration.20
  4. Increased renin, aldosterone and ADH production.18

Sugrue et al21 in a prospective study in patients undergoing major abdominal surgery found that an elevation of IAP was associated with an impairment of 32.7% in renal function compared to 14.1% in those in whom the IAP was normal. According to Burch et al19 intra-abdominal pressures above 25 cm H20 require urgent surgical evaluation and decompression is indicated if the pressure exceeds 35 cm H2O.

Maintenance of Adequate Intravascular Volume

It is well established that hypovolemia is a major risk factor for development of PO-ARF. Adequate volume expansion with saline may reduce this risk by assuring adequate RBF and reducing renal vasoconstriction.22,23 If necessary, intravenous hydration should be instituted the day before surgery. Hemodynamic monitoring including central venous pressure (CVP), pulmonary artery wedge pressure (PAWP), cardiac index and systemic vascular resistance is helpful in optimisation of intravascular fluid status, especially in patients at risk of developing PO-ARF. In abdominal aortic surgery, maintaining extravascular volume according to CVP or PAWP by fluids reduced the incidence of PO-ARF.22 In postoperative trauma patients, aggressive fluid and haemodynamic management converted oliguric to nonoliguric renal failure from 18% to 100% of patients, halved the need for dialysis and decreased mortality from 70% to 28%.24 In cadaveric renal transplantation aggressive fluid management reduced the incidence of postoperative ATN. 25,26 In high-risk surgical patients undergoing surgery, present evidence favours aggressive fluid therapy as a means of reducing PO-ARF.27 In the postoperative period, the most important distinction is between prerenal failure and acute tubular necrosis (ATN). Prerenal insufficiency is completely reversible if renal perfusion and glomerular ultrafiltration pressure are restored rapidly. Patients who are oliguric in the postoperative period should be assumed to be hypovolemic unless proved otherwise.28 The finding of a prerenal pattern on urine analysis (Table 3) supports this assumption. If clinical evaluation does not suggest fluid overload it is reasonable to administer serial fluid challenges (200 mL of saline) guided by CVP or PAWP.

Pharmacological Prophylaxis

Mannitol

Mannitol is an osmotic diuretic. Mannitol increases RBF secondary to release of intrarenal vasodilating prostaglandins and ANP,9 decreases the production of renin and reduces endothelial cell swelling9,29 As explained in the pathophysiology, it is imperative to know whether mannitol induced increase in RBF occurs in the cortex or in the medulla. Studies in animals or humans have failed to identify whether the medullary or cortical blood flow increases.9 Mannitol has been extensively used as a prophylactic agent to minimise the risk of ARF in patients with hemodynamic instability30,31 those with radiocontrast nephropathy23,32 an d those who have undergone biliary surgery31 and aortic surgery33 None of these studies have shown any beneficial role of mannitol in preventing PO-ARF. One small study in abdominal aortic surgery patients suggested that mannitol may reduce subclinical glomerular and renal tubular damage.34 Three randomised studies in renal transplantation patients confirm that mannitol in the presence of adequate volume expansion reduces the incidence of PO-ARF, underlying the importance of fluid loading.25,35,36 Mannitol has been used for long time in the prophylaxis of rhabdomyolysis induced ARF. Recent study suggest aggressive volume expansion alone is sufficient to prevent ARF.37

Mannitol when given in excess of 200g/d or a cumulative dose of >400g/48h can cause ARF due to severe renal vasoconstriction.38 The recommended dose of mannitol in renal transplantation is 250 ml mannitol 20% along with adequate volume expansion just before removal of the arterial clamp.

Frusemide

Frusemide a loop diuretic is prescribed by the clinician when they are faced with low urine output, with the hope that inducing diuresis is protective against ARF. Loop diuretics decrease the metabolic demand of the renal tubular cell, reducing its oxygen requirement and there by increasing its resistance to ischemia.39 Frusemide combines with albumin in the renal tubules and is actively reabsorbed in the proximal tubule where it exerts its actions. Therefore, correction of severe hypoalbuminemia may help.40 Frusemide administered to patients at risk of developing ARF produced no change in GFR, renal plasma flow, RBF and RBF distribution.41 Frusemide has not been found to be effective incardiac surgery42 or in radiocontrast induced nephrotoxicity23 or in combination with dopamine.43 Frusemide in large doses of 1.5-6mg/kg given every 4-h intravenously produced good diuresis, but there was no difference in the number of dialysis required or in the mean duration of renal failure.44,45 Prospective studies have reported that continuous infusion of frusemide is better than a large bolus dose. However, the number of dialysis, duration of renal failure and mortality were not different in the two groups.46-48 Frusemide induced diuresis without maintenance of volume expansion may be detrimental.39 The present data do not provide convincing evidence for the routine use of frusemide as a prophylactic agent against PO-ARF and its role is limited to producing a non-oliguric state, which will allow fluid manipulation.46 In a patient with postoperative oliguria who has not responded to volume therapy, the present evidence suggest continuous infusion of frusemide in the range of 1 to 9 mg per hour intravenously preceded by a loading dose of 10 to 20 mg.49

Dopamine

Commonly, the so-called "renal dose" dopamine (1-3 mg/kg/min) has been used as renal prophylaxis or to treat oliguria. Earlier studies in normal humans demonstrated dopamine increased renal plasma flow, GFR and urinary sodium excretion.50 Dopamine stimulates the dopaminergic receptors DA1 and DA2. The effect of DA1 and DA2 diminishes with prolonged use. If dopamine increases GFR, increased solute presentation to the medullary thick ascending loop of Henle with resultant increase in medullary oxygen demand may actually worsen ischaemia.51

Several studies demonstrated the efficacy of low-dose dopamine in the prevention of PO-ARF in high-risk clinical situations. These include radio contrast induced nephrotoxicity,52-54 postoperative oliguria55 aortic surgery,56 cardiac surgery,57 renal transplantation,58 liver transplantation,59 and postpartum pre-eclampsia.60 These studies were flawed with respect to their small sample size, lack of randomisation and lack of blinding.

However, most randomised studies in humans have not demonstrated prevention of acute renal failure in high-risk patients or improved outcome These studies covered radio contrast induced nephrotoxicity,61 liver transplantation, 62vascular surgery,63-66 cardiac surgery,67-69 biliary surgery,70 and renal transplantation.71 Two large randomised placebo controlled multicenter clinical trials failed to demonstrate the beneficial role of dopamine in the prevention or treatment of acute renal failure.13,72 A meta-analysis on the role of dopamine in acute renal failure found that dopamine did not prevent the onset of acute renal failure or the need for dialysis or the mortality.73 The side effects of dopamine are listed in Table 4.

Fenoldopam

Fenoldopam mesylate is a dopamine analogue which stimulates postsynaptic, peripheral dopamine-1 receptor and has no activity on dopamine-2 receptors or on a and b adrenergic receptors. Fenoldopam has been shown to increase RBF, urine output and natriuresis.74 Natriuresis and diuresis can occur without vasodilation, indicating a proximal tubule site of action for fenoldopam. Fenoldopam is six times more potent than dopamine in producing renal vasodilatation.75 The potential advantages of fenoldopam over dopamine include: increase in dopaminergic potency, lack of tachyarrhythmias and ability to safely infuse through a peripheral vein. Two studies reported the beneficial role of fenoldopam in the prevention of PO-ARF in patients undergoing abdominal aortic aneurysm repair and coronary artery bypass graft.76,77 Further randomised studies are required before one can advocate the use of fenoldopam in the prevention of ARF.

Calcium channel blockers

During ischemia, calcium channels open resulting in vasospasm. The calcium channel blockers exert direct vascular effect with preservation of renal autoregulation and enhanced recovery of RBF, GFR and natriuresis. Three prospective studies in renal transplantation patients confirm the benefits of calcium channel blockers.78-80 However, it has been suggested that there may be factors other than attenuation of ARF in the positive response to calcium antagonists, including increasing plasma cyclosporin and limiting cyclosporin induced renal vasoconstriction as well as modifying T-cell function.81

Calcium channel blockers have been tried successfully in the prevention of radio contrast induced nephropathy82,83 but others have failed to confirm this.84 Critically ill patients may not tolerate high doses of calcium channel antagonists which may further compromise their hemodynamic status. As of now calcium channel blockers cannot be recommended for the preservation of renal function.

Atrial natriuretic peptide

This hormone is produced in the cardiac atria in response to volume overload. The action of ANP is mediated by cyclic guanosine monophosphate (cGMP).85 The physiological effects of ANP include;85-87

  1. Decreased renin and aldosterone secretion.
  2. Decreased sodium reabsorption in the tubule.
  3. Decreased sodium and chloride uptake in the ascending loop of Henle.
  4. Redistribution of medullary blood flow.
  5. Reversal of endothelin induced vasoconstriction.
  6. Increased GFR.

The synthetic ANP analogue anaritide and a renally produced natriuretic peptide ularitide have been tried in preventing or improving renal failure. A preliminary study was promising,88 but in a subsequent large randomised multicenter study in patients with acute tubular necrosis anaritide failed to demonstrate the beneficial effect. Anaritide failed to reduce the overall mortality and dialysis-free survival, although in a subgroup, patients who were oliguric had improved dialysis-free survival, while non-oliguric patients had worsened dialysis-free survival. This was taught to be due to the hypotensive effect of anaritide.87 Ularitide analog of ANP, which causes less hypotension was found to effective for the treatment of incipient oliguric ARF following surgery.89 However, large prospective positive studies are required to warrant clinical use of the drug.

Summary

Despite advances in the management of PO-ARF and renal replacement therapy in the intensive care unit, the mortality remains high. The most common cause of PO-ARF is hypovolemia resulting in prerenal failure. Physicians looking after patients who are at risk for ARF must understand the principles of managing a patient who develops PO-ARF. Awareness of risk factors should prompt careful perioperative management and avoidance of nephrotoxic drugs. Extreme care must be taken to apply published data from different clinical scenarios to the situation at hand. The only management strategy proven to be of value in the prevention of PO-ARF consists in providing adequate volume expansion and avoiding hypovolemia. Relaying on forced diuresis as an indicator of adequate renal function has no scientific rationale. For prophylaxis against radiocontrast-induced ATN the only proven therapy is adequate volume expansion. Frusemide converts oliguric renal failure to non-oliguric renal failure. Frusemide has no justifiable role as a prophylactic agent in the prevention of ARF. Mannitol works better in the presence of volume expansion and excessive use could cause ARF. Mannitol likely has a role as a prophylactic agent in attenuating primary renal dysfunction in transplant patients. Both mannitol and frusemide might worsen hypovolemia by causing diuresis. As for dopamine, enough evidence has been gathered to suggest that it is not a reno-protective drug and its use has additional risks. The use of `renal-dose' dopamine should be avoided. A large randomised study can address the value of fenoldopam in ARF. Anaritide and Ularitide are not available in most of the countries and they wait for a large randomised study to confirm their benefits in oliguric renal failure. Postoperative ARF should be looked at as a "preventable" rather than "treatable" clinical entity.

Acknowledgement

I would like to gratefully acknowledge Dr. Bhaskar Bamachandran, Consultant Anaesthesiologist, India, who critically reviewed the manuscript and offered invaluable suggestions.

References

  1. Novis BK, Roizen MFR, Aronson S, Thisted RA. Association of preoperative risk factors with postoperative acute renal failure. Anesth Analg 1994;78:143-9.
  2. Menashe PI, Ross SA, Gottlied JE. Acquired renal insufficiency in critically ill patients. Crit Care Med 1988;16:1106-9.
  3. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units—causes outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med 1996;24:192-8.
  4. Dawson JL. Acute post-operative renal failure in obstructive jaundice. Ann R Coll Surg 1968;42:163-7.
  5. Suen WS, Mok CK, Chiu SW, Cheung KL, Lee WT, Cheung D, et al. Risk factors for development of acute renal failure (ARF) requiring dialysis in patients undergoing cardiac surgery. Angiology 1998; 49:789-800.
  6. Crawford ES, Crawford JL, Safi HJ, Coselli JS, Hess KR, Brooks B, et al. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 1986;3:389-404.
  7. Ostri P, Mouritsen L, Jorgensen B, Frimodt-Moller C. Renal function following aneurysmectomy of the abdominal aorta. J Cardiovasc Surg 1986;27:714-8.
  8. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 1998;104:343-8.
  9. Simon G. Does mannitol save the kidney? Anaesth Analg 1996; 82:899-901.
  10. Brezis M, Greenfield Z, Shina A, Rosen S. Angiotensin II (AII) augments medullary hypoxia and predisposes to acute renal failure. Kidney Int 1988;33:354-9
  11. Shusterman N, Strom BL, Murray TG, Morrison G, West SL, Maislin G. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am J Med 1987;83:65-71.
  12. Rosenthal MH: Hemodynamic effects of pulmonary insufficiency. Intravenous Anesthesiol Clin 1986; 24:145-8.
  13. Chertow GM, Sayegh MH, Allgren RL, Lazarus JM. Is the administration of dopamine associated with adverse or favourable outcomes in acute renal failure .Am J Med 1996;101:49-53.
  14. Sladen RN. Oliguria in the intensive care unit. Systematic approach to diagnosis and treatment. Anesthesiology Clin North Am 2000; 18:739-52.
  15. Brady HR, Singer GG. Acute renal failure. Lancet 1995;346:1533-40
  16. Harman PK, Kron IL, McLachlan HD. Elevated intra-abdominal pressure and renal function. Ann Surg 1982;196:594-7.
  17. Richards WO, Scovill W, Shin B, Reed W. Acute renal failure associated with increased intra-abdominal pressure. Ann Surg 1983; 197:183-7.
  18. Ivatury RR, Diebel L, Porter JM, Simon RJ. Intraabdominal hypertension and the abdominal compartment syndrome. Surg Clin North Am 1997;77:783_800
  19. Burch JM, Moore EE, Moore FA, Franciose R. The abdominal compartment syndrome. Surg Clin North Am 1996;76:833_42.
  20. Caldwell CB, Ricotta JJ. Changes in visceral blood flow with elevated intra-abdominal blood flow with elevated intra-abdominal pressure. J Surg Res 1987;43:14-20.
  21. Sugrue M, Jones F, Deane SA, Bishop G, Bauman A, Hillman K. Intra-abdominal hypertension is an independent cause of postoperative renal impairment. Arch Surg 1999;134:1082-5.
  22. Bush HL, Huse JB, Johnson WC, O'Hara ET, Nabseth DC. Prevention of renal insufficiency after abdominal aortic aneurysm resection by optimal volume loading. Arch Surg 1981;116;1517-24.
  23. Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol and furosemide on acute decreases in renal function by radiocontrast agents. N Engl J Med 1994;331:1414-6.
  24. Shin B, Mackenzie CF. Postoperative renal failure in trauma patients. Anesthesiology 1979;51:218-21.
  25. Tiggeler RGW, Berden JHM. Hotsma AJ, Koene RAP. Prevention of acute tubular necrosis in cadaveric kidney transplantation by the combined use of mannitol and moderate hydration. Ann Surg 1985; 201:246-51.
  26. Williams CD, Dawidson IJ, Dickerman R, Drake D, Sandor ZF, Trevino G. Intraoperative blood volume expansion induces primary function after renal transplantation: a study of 96 paired cadaver kidneys. Transplant Proc 1991;23:1338-9.
  27. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, et al. Reducing the risk of major elective surgery: randomized controlled trial of preoperative optimization of oxygen delivery. BMJ 1999; 318:1099-103.
  28. Sladen RN. Perioperative renal protections, critical care medicine. In: Perioperative management. New York: Raven Press; 1996, pp551-64.
  29. Lang F. Osmotic diuresis. Renal Physiol 1987;10:160-73.
  30. Schrier RW, Arnold PE, Gordon JA, Burke TJ. Protection of mitochondrial function in ischemic acute renal failure. Am J Physiol 1984;247:F365-F369.
  31. Gubern jm, Sancho JJ, Simo J, Sitiges-Serra A. A randomised trial on the effect of mannitol on postoperative renal function in-patients with obstructive jaundice. Surgery 1988;103:39-44.
  32. Weisberg LS, Kurnik PB, Kurnik BRC. Risk of radio-contrast nephropathy in patients with and without diabetes mellitus. Kidney Int 1994;45:259-65.
  33. Berman LM, Smith LL, Chisholm GD, Weston RE. Mannitol and renal function in cardiovascular surgery. Arch Surg 1964; 88:239-45.
  34. Nicholson ML, Baker DM, Hopkinson BR, Wenham PW. Randomized controlled trial of the effect of mannitol on renal reperfusion injury during aortic aneurysm surgery. Br J Surg 1996;83:1230-3.
  35. Weimar W, Geerlings W, Bijnen AB, Obertop H, van Urk H, Lameijer LD, et al. A controlled study on the effect of mannitol on immediate renal function after cadaver donor kidney transplantation. Transplantation 1983;35:99-101.
  36. Van Valenberg PLJ, Hoitsma AJ, Tiggeler RGWL. Mannitol as an indispensable constituent of an intraoperative hydration protocol for the prevention of acute renal failure. Transplantation 1987; 19:4140-2.
  37. Horrsi E, Barreiro MF, Orlando JM, Higa EM. Prophylaxis of acute renal failure in patients with rhabdomyolysis. Ren Fail 1997;19:283-8.
  38. Gadallah MF, Lynn M, Work J. Mannitol nephrotoxicity syndrome: Role of hemodialysis and postulate of mechanism. Am J Med Sci 1995;309:219-22.
  39. Dishart MK, Kellum JA. An evaluation of pharmacological strategies for the prevention and treatment of acute renal failure. Drugs 2000;59:79-91.
  40. Inoue M, Okajima K, Itoh K, Ando Y, Watanabe N, Yasaka T, et al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int 1987;32:198-203.
  41. Lucas CE, Zito JG, Carter KM, Cortez A, Stebner FC. Questionable value of furosemide in preventing renal failure. Surgery 1977;82:341-320.
  42. Nuutinen L, Hollmen A. The effect of prophylactic use of furosemide on renal function during open-heart surgery. Ann Chir Gynaecol 1976; 65:258-66.
  43. Nuutinen LS, Kairaluoma, Tumonen S, Larmi TKI. The effect of frusemide on renal function in open-heart surgery. J Cardiovasc Surg 1978;19:471-9.
  44. Kleinknecht D, Geneval D, Gozalez Duque LA. Frusemide in acute renal failure: a controlled trial. Clin Nephrol 1976;1:51-8.
  45. Brown CB, Ogg CS, Cameron JS. High dose frusemide in acute renal failure: a controlled trial. Clin Nephrol 1981;15:90-6.
  46. Brown RS. Renal dysfunction in the surgical patient: maintenance of high output state with frusemide. Crit Care Med 1979;7:63-8.
  47. Schuller D, Lynch JP, Fine D. Protocol guided diuretic management: Comparison of furosemide by continuous infusion and intermittent bolus. Crit Care Med 1997;25:1669-75.
  48. Sirivella S, Gielchinsky I, Parsonnet V. Mannitol, furosemide, and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg 2000;69:501-6.
  49. Martin SM, Danziger LH. Continuous infusion of loop diuretics in the critically ill: A review of the literature. Crit Care Med 1994;22:1323-9.
  50. Horwitz D, Foxo S, Godberg L. Effects of dopamine in man. Circ Res 1962;10:237-43.
  51. Heyman SN, Kaminski N, Brezis M. Dopamine increases renal medullary blood flow without improving regional hypoxia. Exp Nephrol 1995;3:331-7.
  52. Hall KA, Wong RW, Hunter GC, Camazine BM, Rappaport WA, Smyth SH, et al. Contrast-induced nephrotoxicity: the effects of vasodilator therapy. J Surg Res 1992;53:317-20.
  53. Hans SS, Hans BA, Dhillon R, Dmuchowski C, Glover J. Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency. Am Surg 1998;6:432-6.
  54. Stevens MA, McCullough PA, Tobin KJ, Speck JP, Westveer DC, Guido-Allen DA, et al. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J Am Coll Cardiol
  55. Flancbaum L, Choban PS, Dasta JF. Quantitative effects of low-dose dopamine on urine output in oliguric surgical intensive care unit patients. Crit Care Med 1994; 22:61-8.
  56. de Lasson L, Hansen HE, Juhl B, Paaske WP, Pedersen EB. A randomised, clinical study of the effects of low-dose dopamine on central and renal hemodynamics in infrarenal aortic surgery. Eur J Vasc Endovasc Surg 1995; 10:82-90.
  57. Lema G, Urzua J, Jalil R, Canessa R, Moran S, Sacco C, et al Renal protection in patients undergoing cardiopulmonary bypass with preoperative abnormal renal function. Anesth Analg 1998; 86:3-8.
  58. Flancbaum L, Dick M, Choban PS, Dasta JP. Effects of low-dose dopamine on urine output in oliguric, critically ill, renal transplant patients. Clin Transplant 1998; 12:256-9.
  59. Polson RJ, Park GR, Lindop MJ, Farman JV, Calne RY, Williams R. The prevention of renal impairment in patients undergoing orthotopic liver grafting by infusion of low dose dopamine. Anaesthesia 1987;42:15-9.
  60. Mantel GD, Makin JD. Low dose dopamine in postpartum pre- eclamptic women with oliguria: a double blind, placebo controlled, randomized trial. Br J Obstet Gynecol 1997;104:1180-3.
  61. Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD, et al. Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency. Am J Cardiol 1999;83:260-3.
  62. Swygert TH, Roberts LC, Valek TR, Brajtbord D, Brown MR, Gunning TC, et al. Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients. Anesthesiology 1991;75:571-6.
  63. Pass LJ, Eberhart RC, Brown JC Rohn GN, Estrera AS. The effect of mannitol and dopamine on the renal response to thoracic aortic cross clamping in man. J Thorac Cardiovasc Surg 1988;95:608-12.
  64. Paul MD, Mazer CD, Byrick RJ, Rose DK, Goldstein MB. Influence of mannitol and dopamine on renal function during elective infrarenal aortic clamping in man. Am Nephrol 1986;6:427-34.
  65. Baldwin L, Henderson A, Hickman P. Effect of postoperative low dose dopamine on renal function after elective major vascular surgery. Ann Intern Med. 1994;120:744-7.
  66. Pavoni V, Verri M, Ferraro L, Volta CA, Paparella L, Capuzzo M, et al. Plasma dopamine concentration and effects of low dopamine doses on urinary output after major vascular surgery. Kidney Int Suppl 1998; 66:S75-80.
  67. Costa P, Ottino GM. Low-dose dopamine during coronary artery bypass graft in patients with renal dysfunction. J Cardiothoracic Anaesth 1990;4:469-73.
  68. Myles PS, Buckland MR, Schenk NJ, Cannon GB, Langley M, Davis BB, et al. Effect of "renal-dose" dopamine on renal function following cardiac surgery. Anaesth Intensive Care. 1993;21:56-61.
  69. Lassnigg A. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 2000,11:97-104.
  70. Parks RW, Diamond T, McCrory DC, Johnston GN, Rowlands BJ. Prospective study of postoperative renal function in obstructive jaundice and the effect of perioperative dopamine. Br J Surg 1994; 81:437-9.
  71. Kadieva VS, Friedman L, Margolius LP, Jackson SA, Morrell DF. The effect of dopamine eon graft function in patients undergoing renal transplantation. Anesth Analg 1993;76: 362-5.
  72. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomized trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 2000; 356:2139-43.
  73. Kellum J, Decker JM. Use of dopamine in acute renal failure: A meta-analysis. Crit Care Med 2001;29:1526-31.
  74. Lokhandwala MF: Preclinical and clinical studies on the cardiovascular and renal effects of fenoldopam: a DA-1 receptor agonist. Drug Devel Res 1987;10:123-34.
  75. Mathur VS, Swan SK, Lambrecht LJ, Anjum S, Fellmann J, McGuire D, et al. The effects of fenoldopam, a selective dopamine receptor agonist, on systemic and renal hemodynamics in normotensive subjects. Crit Care Med. 1999;27:1832-7.
  76. Gilbert TB, Hasnain JU, Flinn WR, Lilly MP, Benjamin ME. Fenoldopam infusion associated with preserving renal function after aortic cross clamping for aneurysm repair. J Cardiovasc Pharmacol Ther 2001;6:31-6.
  77. Halpenny M, Lakshmi S, O'Donnell A, O'Callaghan-Enright S, Shorten GD. Fenoldopam: renal and splanchnic effects in patients undergoing coronary artery bypass grafting. Anaesthesia 2001; 56:953-60.
  78. Duggan KA, Macdonald GJ, Charlesworth JA, Pussell BA. Verapamil prevents post-transplant oliguric renal failure. Clin Nephrol 1985;24:289-91.
  79. Wagner K, Albrecht S, Neumayer H-H. Prevention of posttransplant acute tubular necrosis by the calcium antagonist diltiazem: a prospective randomized study. Am J Nephrol 1987;7:287-91.
  80. Lustig S, Shmueli D, Boner G, Bar-Nathan N, Nakache R, Yussim A, et al. Gallopamil reduces the post-transplantation acute tubular necrosis in kidneys from aged donors. Isr J Med Sci 1996;32:1249-51.
  81. Ladefoged SD, Andersen CB. Calcium channel blockers in kidney transplantation. Clin Transplant 2000;8:128-33.
  82. Bakris GL, Burnett Jr JC. A role for calcium in radiocontrast induced reductions in renal hemodynamics. Kidney Int 1985; 27:465-8.
  83. Neumayer HH, Junge W, Kufner A. Prevention of radio contrast media induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomized clinical trial. Nephrol Dial Transplant 1989;4:1030-6.
  84. Cacoub P, Deray G, Baumelou A, Jacobs C. No evidence for protective effects of nifedipine against radiocontrast-induced acute renal failure. Clin Nephrol 1988;29:215-6.
  85. Maack T, Camargo MJ, Kleinert HD, Laragh JH, Atlas SA . Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985;27:607-15.
  86. Hums HD. Acute renal failure-the promise of new therapies (editorial). N Engl J Med 1997;336:870-1.
  87. Allgren RL, Marbury TC, Rahman SN, Weinberg LS, Fences AZ, Lafayette RA, et al. Anaritide in acute tubular necrosis, auricular anaritide acute renal failure study groups. New Engl J Med 1997; 336:828-34.
  88. Rahman SN, Kim GE, Mathew AS, Goldberg CA, Allgren R, Schrier RW, et al. Effects of atrial natriuretic peptide in clinical acute renal failure. Kidney Int 1994;45:1731-8.
  89. Meyer M, Wiebe K, Wahlers T, Zenker D, Schulze FP, Michels P, et al. Urodilatin (INN: ularitide) as a new drug for the therapy of acute renal failure following cardiac surgery. Clin Exp Pharmacol Physiol 1997;24:374-6.

This article is also available in full-text from http://www.jpgmonline.com/

© Copyright 2002 - Journal of Postgraduate Medicine


The following images related to this document are available:

Photo images

[jp02020t3.jpg] [jp02020t2.jpg] [jp02020t1.jpg] [jp02020t4.jpg]
Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil