About Bioline  All Journals  Testimonials  Membership  News

Neurology India
Medknow Publications on behalf of the Neurological Society of India
ISSN: 0028-3886 EISSN: 1998-4022
Vol. 51, Num. 1, 2003, pp. 39-42

Neurology India, Vol. 51, No. 1, Jan-Mar, 2003, pp. 39-42

Endoscopic third ventriculostomy in obstructed hydrocephalus

D. Singh, V. Gupta, A. Goyal, H. Singh, S. Sinha, A. K. Singh, S. Kumar

Department of Neurosurgery, G. B. Pant Hospital, Delhi, India.
Dr. D. Singh, 6/349, Gita colony, Delhi-110031.

Accepted on 07.12.2001.

Code Number: ni03007

Forty-three ETV were performed in 46 patients of obstructive hydrocephalus. Study was divided into two groups. Group 1 was with 29 children of less than two years age. Group 2 had seventeen patients of more than 2 years, adolescent and adults. Group 1 had 70% clinical and 63% radiological improvement whereas Group 2 showed 100% clinical and 73% radiological improvement. ETV failed in relieving the symptoms of hydrocephalus in eight patients. They were eventually benefited with VP Shunt. There was one postoperative death, which was not related to the procedure. ETV is an important alternative to VP Shunt in relieving hydrocephalus due to obstruction in CSF pathway.

Key Words: Endoscopy, Hydrocephalus, Third ventriculostomy.

The concept of Endoscopic surgery surprisingly started much before the invention of electricity bulb by Thomas Edison (1879). Dandy coined the term `ventriculography' and he is accepted as the father of neuroendoscopy.2 The first successful third ventriculostomy was performed by Mixter.3 Subsequently there have been a number of publications, which have established its role in neurosurgical practice, particularly in hydrocephalus.We present our experience with 46 cases of Endoscopic Third Ventriculostomy (ETV) in obstructive hydrocephalus.

Material and Methods

Forty-three endoscopic third ventriculostomies (ETV) were performed in 46 cases of congenital obstructed hydrocephalus during the period from Dec.1999 to July 2001. Study population has been subdivided into two Groups [Group 1 - children less than two years of age (29 cases) and Group 2- children more than two years of age, adolescent and adults (17 cases)]. All cases had obstructive hydrocephalus with either features of raised intracranial tension (ICT) or an enlarging head.

Enlarged third and lateral ventricles, presence of CSF in subarachnoid spaces and extension of floor of the third ventricle behind and below the dorsum sella were the selection criteria for ETV as suggested by Hoffman.4

ETV were performed under general anesthesia using zero degree Storz operating endoscope. A 1.5 cm skin incision was taken at the level of coronal suture about 3 cm. away from the midline. Lateral angle of the open anterior fontanel was used as an entry point in small children. Burr hole was made with 14 mm burr. The dura was opened and coagulated. Brain surface was coagulated to allow the access of endoscopic sheath (5.6 mm)and trocar into the frontal horn of lateral ventricle. Trocar was removed and zero degree operating endoscope was passed into the sheath. Within the lateral ventricle foramen of Monro was identified using standard landmarks of choroid plexus, thalamostriate and septal veins. Endoscope was then negotiated into the third ventricle whilst protecting the fornices. Fixation of endoscope was done with the Leyla retractor.

Once the third ventricle was entered, the mammillary bodies and infundibular recess were identified. Infundibular recess was identified as bright red spot along the anterior limit of the floor of the third ventricle. Floor of the third ventricle was carefully inspected for probable site of the ETV. The site of ostomy was planned at mid- way between mammillary bodies and infundibular recess. Irrigation of ventricle was done with the help of warm ringer lactate at body temperature, particularly in children to avoid hypothermia. Rate of irrigation was kept to 5-8 drops per minute to avoid excessive rise in ICP. Outflow of the endoscope was kept open to allow egress of excessive fluid overload in intracranial cavity.

All these procedures were performed after visualization on a monitor with the help of three chip camera. Floor of the third ventricle was punctured with monopolar cautery, Ostomy was enlarged to 6-8 mm size with monopolar coagulaton saving the basilar artery and its branches. Endoscope was then advanced further to look for any second membrane which if present was punctured. Any bleeding from the margin of the ostomy was coagulated. In case of excessive bleeding a constant irrigation and suction clear the fields to a point of coagulation under vision.

Once the ostomy was well formed, CSF was seen flowing freely through the opening. To and fro movements of the margins of the ostomy site confirms the patency of the ETV. In case of doubt of patency of the ETV, a 3rd ventriculogram was performed with 3-4 cc of omnipaque injected through the side port of the endoscope. Being more viscous than CSF, efflux of omnipaque through the ostomy site is easily seen on fluoroscopy. A spot X-ray was taken for recording (Figure 1).

At this stage the endoscope was slowly withdrawn. Wound was closed in a single layer after coagulating any surface bleeding.

Patient was called for follow-up at 15 days, one, two, and six months interval.


Forty-three ETV were performed in 46 cases. In three cases, ETV could not be successfully performed and a VP shunt procedure was carried out. This was because one patient from Group 1 had unfavorable third ventricular anatomy and two cases in Group 2 had excessive bleeding from the cortical veins. There were 29 children of less than two years age (Group 1) and17 adults/adolescent (Group 2). CT scan was suggestive of aqueductal stenosis in 34 cases and outlet obstruction in 9 cases.

There were a number of variations within the ventricular system as seen with the endoscope. A very narrow opening of aqueduct was seen in 22 cases. Imperforated floor of the third ventricle was seen in 8 cases.

Postoperative hypothermia was observed in three patients in Group 1, which resulted in delayed recovery from anaesthesia. There was one postoperative death in a 9-month-old child having a poor neurological and physical state prior to surgery.

Follow-up period ranged from one to 18 months. Initial clinical improvement was noticed in all cases. However, within one month eight children (Group 1) had recurrent sympotms. CT scan in all these cases showed enlarged ventricles. In three of these cases a repeat endoscopy showed patent ostomy site. VP shunt was done for all these 8 cases. At two months follow-up, clinical improvement was 100% in patients of Group 2 and 70% in patients of Group 1. Radiological regression of the size of the ventricle was seen in 12 patients in Group 1 (63%) and in 11 cases in Group 2 (73%) (Figures 2a & 2b). However, 11 patients,7 in Group 1 and 4 in Group 2 showed significant clinical improvement despite the unchanged size of the ventricle. These eleven patients showed regression in periventricular lucency. There was no case of delayed rise of ICT after 2 months.


Ventriculoperitoneal shunt in the treatment of hydrocephalus is a well-established, safe and a time-tested procedure. However, there are a number of possible problems associated with a shunt procedure.1,5-9

ETV has been used in relieving ventriculomegaly in a number of other clinical conditions such as SAH,8,9 spinal dysraphism,10,11 normal pressure hydrocephalus,12 shunt infections and slit ventricular syndrome8,9 posterior fossa and tectal plate tumours,1,9 and Chiari malformations.9 Obliteration of interpeduncular cistern or tip of basilar artery lying too close to the floor to cause safe perforation are relative contraindications to the procedure.

Endoscopic instruments and technique are still evolving. Flexible fibroscope with outer diameter between 2.3 to 4.6 mm13-16 and rigid endoscope with outer diameter between 3.8 to 6.2 mm are more frequently used.1,9,17-20

The current problem is with the fibroscope are its inherent poor image quality, orientation difficulties and inability to fix the scope during the surgery. Rigid endoscope on the other hand is more convenient for third ventriculostomy.17-19,21

A variety of methods have been described for perforating the floor of the third ventricle which include the use of endoscope itself, blunt probe and fogarty catheters,7,14,17 monopolar coagulation19,20,22 and laser fenestration.16,23

Monopolar coagulation helps in perforating the floor and enlarging the stoma. Coagulation produces a peripheral scar around the margin of the ostomy which reduces the risk of restenosis. It is also helpful for simultaneous coagulation of any bleeding point during surgery. The second membrane, the membrane of Liliequist is simultaneously opened with the same instrument.

Fixation of the instrument in our series was accomplished with Leyla retractor. The mean time of surgery was reduced from 57 minutes in the first case to 4 minutes in some of the later cases.

Following an ETV procedure, the results of a successful surgery are seen in terms of clinical and radiological improvement. The clinical improvement in aqueductal stenosis following ETV is variable. It ranges from 56% to 87%.19,24,25 Adults have a better outcome than children.1 Most authors feel that the outcome is better in children of more than 2 years of age.22,26-29 In those younger than 2 years, the clinical improvement is less than 50%. Some have reported 100% failures in less than one year of age with aqueductal stenosis while others have found no correlation with age.9 In our series clinical improvement was 100% in Group 2 whereas Group 1 had 70% clinical recovery. Poor results among children in Group 1 could be due to poor development of CSF absorptive surfaces. Unfortunately, a non-invasive test is currently not available to predict the response to internal shunting such as ETV. Even invasive infusion test may not be reliable.

Stoma closure has been reported in 8% resulting from restenosis, particularly in those patients with high CSF protein and fibrinogen levels or in patients with some intraoperative bleeding.1

It has been observed, particularly in cases with chronic hydrocephalus, that the clinical improvement occurs even without changes in the size of the ventricle. Radiological improvement after ETV varies from 53-87%.1,25,30,31,37 In our series overall radiological improvement was 63% and 73% in patients of Group 1 and Group 2 respectively.

It is also well documented that radiological improvement in the form of regression of size of the ventricle or decrease in periventicular lucency/ edema takes a longer time than clinical recovery. MR flow studies,32,33 ultrasound33 can confirm the patency of the ETV. Third ventriculography also provides similar informations.

Technical failures of endoscopic procedures vary from 5-26%.1,6,9 The most common cause of failure is bleeding from cortical veins or intraventricular bleed. Early failure within one month is either due to poor absorptive surface or poor procedure. Late failures are due to stoma closure.1,2,9

A major bleed from the basilar artery or its branches can be fatal.34,35 Intraoperative Doppler can be a useful tool to avoid injury to major vessels.36 Hypothermia is a common observation due to cold irrigating fluid. Injury to fornices, hypothalamus, thalamus, 3rd nerve, are possible.37,38

Endoscopic third ventriculostomy is rapidly becoming popular as a new method for treatment of hydrocephalus. There are a number of advantages of ETV over VP shunt in the treatment of hydrocephalus. There are no shunt related problems. Further there are no low pressure complications as seen with VP shunt. It can also be performed in those who are previously shunted and has resulted in shunt independent life in 76% cases.24 Being a short procedure, patient anesthesia and operation time is significantly reduced. Hospital stay is short and overall it is much more economical than a VP shunt.


  1. Hopf NJ, Grunert P, Fries G Resch DM, Perneczsky A. Endoscopic third ventriculostomy: Outcome analysis of 100 consecutive procedures Neurosurgery 1999;44:795-806.
  2. Gieger M, Cohen AR. The history of neuroendoscopy. In: AR cohen, SJ Hains, eds. Minimally invasive technique in neurosurgery series. Concepts in neurosurgery. Congress of neurosurgical surgeons. Baltimore: MD Williams & Wilkins; 1995. pp. 1-5.
  3. Mixter WJ. Ventriculoscopy and puncture of the third ventricle. Boston Med Surg 1923;188:277-8.
  4. Hoffman HJ, Harwood Nash D, Gilday DL. Percutaneous third ventriculoscopy in the management of noncommunicating hydrocephalus.Neurosurgery 1980;7:313-21.
  5. Grant JA, McLone DG. Third ventriculostomy: A review. Surg Neurol 1997;47:210-2.
  6. Teo C. Minimally Invasive Techniques for Neurosurgery. In: Helwig D, Bauer BL, eds. Third ventriculostomy in treatment of hydrocephalus; Experience with more than 120 cases. Berlin: Springer Verlag; 1998. pp. 73-6.
  7. Varies JK. Endoscopy as an adjunct to shunting for hydrocephalus. Surgical Neurol 1980;13:69-72.
  8. Varies JK, Friedmann WA. A quantitative assessment of CSF resorption in infants with meningomyelocoel. Surg Neurol 1980;13:38-40.
  9. Brockmayer D, Abtin K, Carey L, Walker ML. Endoscopic third ventriculostomy: An out come analysis. Pediatr Neurosurg 1998;28:236-40.
  10. Jones RF, Kwok BC, Steining WA, Vomau M. Thid ventriculostomy for patients with spinal dysraphyism:Indications and contraindications. Eur J Paediatr Surg 1996;1:5-6.
  11. Teo C, Jones R. Management of hydrocephalus by endoscopic third ventriculostomy in patients with meningomyelocoel. Pediatr Neurosurg 1996;25: 57-63.
  12. Mitchell P, Mathew B. Third ventriculostomy in normal pressure hydrocephalus. Br J Neurosurg 1999;13:382-5.
  13. Hellwig D, Heinemann A, Riegel T. Minimally invasive techniques for neurosurgery. In: Hellwig D, Bauer, eds. Endscopic third ventriculostomy in treatment of obstructive hydrocephalus caused by primary aqueductal stenosis. Berlin: Springer verlag; 1998. pp. 65-72.
  14. Jones RF, Stening WA, Brydon M. Endoscopic third ventriculostomy. Neurosurgery 1990;26:86-92.
  15. Oka K, Yamamato M, Ikeda K, Tomonaga M. Flexible endoneurosurgical therapy for aqueductal stenosis. Neurosurgery 1993;33:236-43.
  16. Vandertop WP, Verdaasdonk RM, Van swol CEP. Laser assisted neuroendoscopy using neodymium-yetrium aluminium garnet or diode contact laser with pretreated fibres tip. J Neurosurg 1998;88:82-92.
  17. Goodman RR. Magnetic resonance image directed stereotactic endoscopic third ventriculostomy. Neurosurgery 1993;32:1043-7.
  18. Grunert P, Perneczky A, Resch K. Endoscopic procedures through the foramen intraventriculare of Monro under stereotactic conditions. Minim Invasive Neurosurg 1994;37:2-8.
  19. Kunz U, Goldmann A,Bader C, Waldbaur H, Oldenkott P. Endoscopic fenestration of floor of the third ventricle in aqueductal stenosis. Minim Invasive Neurosurg 1994;37:42-7.
  20. Reiger A, Rainov NG, Sanchin L, Schopp G, Burkert W. Ultrasound guided endoscopic fenestration of the third ventricular floor for noncommunicating hydrocephalus. Minim Invasive Neurosurgery 1996;39:17-20.
  21. Sayers MP, Kosnik EJ. Percutaneous third ventriculostomy: Experience and technique. Childs Brain 1976;2:24-30.
  22. Sainte Rose C. In: Manwaring KH, Crone KR, eds. Third ventriculostomy, Neuroendoscopy. New York: Mary Ann Liebert; 1992. vol.1. pp. 47-62.
  23. Mc Laughlin MR, Wahlig JB, Kaufmann AM, Albright AL. Traumatic Basilar aneurysm after endoscopic third ventriculostomy: case report. Neurosurgery 1997;41:1400-4.
  24. Cinalli G, Sainte-Rose C, Chumas P, Zerah M, Failure of Third ventriculostomy in the treatment of aqueductal stenosis in children. J Neurosurg 1999;90:448-54.
  25. Tisell M, Almstrom O, Stephenson H, Tullberg M, Wikkelso C. How effective is Endoscopic third ventriculostomy in treating adult hydrocephalus caused by primary aqueductal stenosis. Neurosurgery 2000;46:104-11.
  26. Hirsch JF, Hirsch E, Sainte-Rse C, Renier D, Pierre-Khan. Stenosis of the aqueduct of Sylvius: Etiology and treatment. J Neurosurg Sci 1986;39:29-39.
  27. Jones RF, Kwok BC, Stening WA, Vonau M. Neuroendoscopic third ventriculostomy: A practical alternative to extracranial shunt in non communicating hydrocephalus. Acta Neurochir Suppl (Wein) 1994;61:79-83.
  28. Jones RF, Kwok BC, Stening WA, Vonau M. The current status of third ventriculostomy in the management of non communicating hydrocephalus. Minim Invasive Neurosurg 1994;37:28-36.
  29. Jones RFC, Teo C, Stening WA, Kwok BCT. Neuroendoscopy. In: Manwaring KH, Crone KR, eds. Neuroendoscopic third ventriculostomy. New York: Mary Ann Liebert; 1992. vol. 1. pp. 63-77.
  30. Gagemi M, Donati P, Maiuri F, Longatti P, Gondano U, Mascari C. Endoscopic third ventriculostomy for hydrocephalus. Minim Invasive Neurosurg 1999;42:128-32
  31. Cinnali G, Salzar C, Malluci C, Yada JZ, Zerah M, Sainte-Rose C. The role of Endoscpic third ventriculostomy in the management of shunt malfunction. Neurosurgery 1998;43:1323-9.
  32. Hayashi N, Endo S, Hamada H, Shibata T, Fukado O, Takaku A. Role of preoperative mid sagital Magnetic Resonance imaging in endoscopic third ventriculostomy. Minim Invasive Neurosurg 1999;42:79-82.
  33. Fourtan M, Mafee MF, Dujovny M. Third ventriculostomy, Phase contrast cine MRI and endoscopic technique. Neurosurg Res 1998;20:443-8.
  34. Handler MH, Abbott R, Lee M. A near fatal complication of third ventriculostomy; case report. Neurosurgery 1994;35:525-7.
  35. Schroeder HWS, Warzok RW, Assaf JA, Gabb MR. Fatal subarachnoid haemorrhage after endoscopic third ventriculostomy. J Neurosurg 1999;90:153-5
  36. Schmidt RH. Use of microvascular Doppler probe to avoid basilar artery injury during endoscopic third ventriculostomy-Technical note. J Neurosurg 1999;90:156-9.
  37. Schroeder HWS, Gabb MR. Endoscopic aqueductoplasty. Neurosurgery 1999;45:508-16.
  38. Darymple SJ, Kelly PJ. Computer assisted third ventriculostomy in the management of non communicating hydrocephalus. Steriotact Funct Neurosurg 1992;59:105-10.

Copyright 2003 - Neurology India. Also available online at

The following images related to this document are available:

Photo images

[ni03007f2b.jpg] [ni03007f1.jpg] [ni03007f2a.jpg]
Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil