search
for
 About Bioline  All Journals  Testimonials  Membership  News


Indian Journal of Pharmacology
Medknow Publications on behalf of Indian Pharmacological Society
ISSN: 0253-7613 EISSN: 1998-3751
Vol. 42, Num. 5, 2010, pp. 306-311

Indian Journal of Pharmacology, Vol. 42, No. 5, September-October, 2010, pp. 306-311

Research Article

Antiovulatory and abortifacient effects of Areca catechu (betel nut) in female rats

1 Department of Pharmacology, Kasturba Medical College, Manipal, Manipal University, Karnataka, India
2 Department of Biochemistry, Kasturba Medical College, Manipal, Manipal University, Karnataka, India

Correspondence Address: Tara Shanbhag, Department of Pharmacology, Kasturba Medical College, Manipal, Manipal University, Karnataka India, tarashanbhag7@yahoo.co.in

Date of Submission: 08-Apr-2010
Date of Decision: 29-Jun-2010
Date of Acceptance: 16-Jul-2010

Code Number: ph10089

DOI: 10.4103/0253-7613.70350

Abstract

Objectives : To study the antiovulatory and abortifacient effects of ethanolic extract of Areca catechu in female rats.
Materials and Methods
: For antiovulatory effect, ethanolic extract of A. catechu at 100 and 300 mg/kg doses was administered orally for 15 days. Vaginal smears were examined daily microscopically for estrus cycle. Rats were sacrificed on 16 th day. Ovarian weight, cholesterol estimation, and histopathological studies were done. Abortifacient activity was studied in rats at 100 and 300 mg/kg doses administered orally from 6 th to 15 th day of pregnancy. Rats were laparotomised on 19 th day. The number of implantation sites and live fetuses were observed in both horns of the uterus.
Results
: The extract of A. catechu showed a significant decrease in the duration of estrus at 100 mg/kg (P = 0.015) and 300 mg/kg doses (P = 0.002) as compared with control. Metestrus phase was also significantly reduced at 100 mg/kg (P = 0.024) and 300 mg/kg doses (P = 0.002). There was a significant increase in proestrus (P < 0.001) phase. However, diestrus phase was unchanged. Histopathological study of the ovaries showed mainly primordial, primary, and secondary follicles in the test groups as compared to control. There was also a significant (P = 0.002) decrease in ovarian weight and a significant (P = 0.021) increase in ovarian cholesterol level at 100 mg/kg dose. In the study to evaluate abortifacient effect, the mean percentage of abortion with 100 and 300 mg/kg doses were 75.5% and 72.22%, respectively, which was significantly (P = 0.008 and P = 0.006, respectively) increased when compared with control.
Conclusion
: The ethanolic extract of A. catechu at doses of 100 and 300 mg/kg has antiovulatory and abortifacient effects.

Keywords: Abortifacient, Areca catechu, antiovulatory, implantation sites, ovarian cholesterol

Introduction

Infertility is one of the most common problems with significant medical, psychosocial, and economic implications. There are various factors responsible for male and female infertility. Environmental factors are also responsible like volatile organic solvents or silicones, biological agents (viruses, parasites), physical agents (radiation, exposure to electric shock, excessive vibration, or heat), [1] chemical dust, pesticides; [2] alcohol, [3] smoking, [4] caffeine consumption, [5],[6] areca nut chewing, [7] etc. Chewing the mixture of areca nut and betel leaf is a tradition, custom, or ritual, which dates back thousands of years from South Asia to the Pacific region. It has now been established that areca nut use causes variety of health hazards including precancerous lesions in mouth. Use of areca nut is common among female population also. Areca nut is most commonly chewed as a constituent of betel quid. The betel quid is a mixture of betel leaf, areca nut, and slaked lime (calcium hydroxide). The important constituents of areca nut are tannins (15%), gallic acids, oily matter (fat 14%), gum and three main alkaloids arecoline (0.07%), arecaine (1%), and guracine, which have the property of vasoconstriction. Arecaidine, guvacoline, guvacine, and choline are present in traces only. Pharmacological actions of arecoline resembles that of muscarine and pilocarpine. Dried areca nut has hepatoprotective, [8] hypoglycemic, [9] astringent, vermifugal, sialogogue, [10] antibacterial, antioxidant, antiseptic, bronchostimulant, euphorient, and wound-healing properties. [7] In addition, it has abortifacient, anti-implantation, and antifertility activities. [11] Studies have revealed that areca nut in male albino rats of Wistar strain causes morphofunctional changes such as stimulation of hormonogenesis and disruption of spermatogenesis. [12] A survey of literature revealed that antifertility effect of areca nut has not been documented in female albino rats. Hence, this study was undertaken to evaluate antiovulatory and abortifacient effects of A. catechu in female albino rats.

Materials and Methods

Plant material and extraction [13]

The nuts of Areca catechu were purchased from local market, chopped into small pieces, and dried under the sun for few days. The dried chopped nuts were powdered and defatted in petroleum ether. The residue was hot extracted in soxhlet apparatus (Tensil Glass Works, Bangalore, India) using 400 mL of 70% ethanol (Qualigens Fine Chemicals, Mumbai, India) for five cycles. This extract was filtered, lyophilized, and concentrated over a water bath to obtain dried extract. This extract was stored in a desiccator (Quality Traders, Eranakulum, Kerala). A suspension of the extract in 4% gum acacia (Nice Chemicals, Cochin, India) was used for the study.

Acute toxicity study

Acute toxicity was done in female albino rats of Wistar strain weighing 150-200 g. Rats were fasted overnight. They were divided into six groups of two rats each. The alcoholic extract of betel nut was administered through the feeding tube to each group in ascending and widely spaced doses, namely 10, 30, 100, 300, 1000, and 3000 mg/kg (p.o.). The rats were observed continuously for 2 h and then occasionally for further 4 h, and finally overnight mortality was recorded. [14] No signs of toxicity were observed even with 3000 mg/kg of ethanolic extract of A. catechu. Therefore, two doses of the extract were chosen, 300 mg/kg corresponding to one-tenth of the maximum tolerated dose (3000 mg/kg) and the other was 100 mg/kg.

Animals

The experimental protocol was approved by Institutional Animal Ethics Committee. The rats were maintained under standard conditions in animal house approved by the Committee for the purpose of Control and Supervision of Experiments on Animals (CPCSEA). The temperature was 23 ± 2ºC and humidity was 50 ± 5%. Mature, healthy female albino rats weighing 150-200 g were used. They were provided with standard rat feed (Amrut lab animal feed, Pranav Agro Industries Ltd., Sangli, Maharashtra) and water ad libitum.

Estrus cycle

Phases of estrus cycle of each female rat used for study of antiovulatory and abortifacient effects were determined by observing vaginal smear daily between 9 and 10 AM continuously for 15 days. Vaginal smear was prepared by introducing a drop of distilled water into the vagina with the help of a dropper, collecting back and placing it on a clean slide after adding a drop of glycerin. [15] The prepared smear was examined microscopically under low power for different types of cells [Figure - 1]. There are four phases in estrus cycle of rat. If majority of cells are leucocytes, then it was labeled as in diestrus phase [Figure - 1]a. Presence of large number of nucleated cells indicated proestrus phase [Figure - 1]b. Estrus phase was confirmed when the smear showed more than 50% cornified epithelial cells [Figure - 1]c. Metestrus phase was indicated by the presence of many neutrophils and scattered squamous epithelial cells in the smear [14] [Figure - 1]d. Rats exhibiting three consecutive regular estrus cycles were chosen for the study.

Antiovulatory effect

This was studied by observing the effect of A. catechu on the duration of phases of estrus cycle, estimation of ovarian weight and cholesterol. The rats with three regular estrus cycles were divided into three groups of six each. Rats were grouped in such a way that all the groups were in estrus phase at the start of treatment. Rats in Group I received 2 mL of 4% gum acacia (p.o. daily) for 15 days and served as control. Groups II and III received ethanolic extract of A. catechu (p.o. orally) at 100 and 300 mg/kg body weight, respectively, for 15 days. Daily vaginal smears were observed in the morning between 9 and 10 AM. The number of days spent in each phase by each rat was calculated. Then average number of days spent in each phase by each group was calculated. At the end of the study, i.e. on the 16 th day, 24 h after the last dose, all the rats were killed by cervical dislocation. [16] Ovaries were dissected out, freed from extra deposition, and weighed. Right ovary from each rat was processed for cholesterol estimation and another for histopathological study. [17]

Cholesterol estimation

Ovarian tissue was weighed and homogenized in cold saline to get uniform suspension (1:20 ratio that is 20 ΅L of saline was added per milligram of tissue). Cholesterol was estimated using manual kit supplied by Aspen Laboratory Pvt. Ltd., Delhi. Values were expressed as microgram/milligram of ovary.

Abortifacient effect

Rats exhibiting three consecutive regular estrus cycles were chosen for the study. The female rats in proestrus phase were mated with male rats of known fertility in the ratio of 2:1 in the evening. Vaginal smears were examined in the following morning for the presence of sperms to confirm mating. The pregnancy rate was 100%. Female rats exhibiting thick clumps of spermatozoa in the vaginal smear were chosen for the study and that day was considered as day one of pregnancy. Eighteen pregnant rats were divided into three groups of six each. Group I served as a control, which received 2mL of 4% gum acacia (p.o. daily). Groups II and III received ethanolic extract of A. catechu (p.o. daily) at 100 and 300 mg/kg body weight, respectively, from 6 th to 15 th day of pregnancy which is the period of organogenesis. On 19 th day of pregnancy, all the rats were laparotomised under light ether anesthesia. The number of implantation sites and live fetuses were noted in both horns of the uterus. [16] The observations of the drug-treated groups were compared with control group.

Percentage of abortion was calculated by the formula:

Statistical analysis

Results were expressed as mean with standard deviation for data following normal distribution and median with interquartile range for skewed data. P < 0.05 was considered statistically significant. The differences between experimental groups were compared using one-way ANOVA followed by Tukey′s post hoc test and also Kruskal-Wallis H-test followed by Mann-Whitney test with Bonferroni correction for skewed data.

Results

Acute toxicity studies

Mortality and behavioral changes were not observed in the acute toxicity study till the dose of 3000 mg/kg. Therefore, two doses (100 and 300 mg/kg) were selected for the study.

Antiovulatory effect

Effect on the estrus cycle

The number of days the rats spent in proestrus phase in groups II and III was significantly (P < 0.001) higher as compared with the control group. There was also a significant decrease in the median duration of the estrus at 100 mg/kg (P = 0.015) and 300 mg/kg doses (P = 0.002) as compared to the control. Metestrus phase was also significantly reduced at 100 (P = 0.024) and 300 mg/kg doses (P = 0.002) as compared to the control. However, there was no significant change in the duration of the diestrus phase between the groups as shown in [Table - 1].

Effect on ovarian weight (right ovary)

In drug-treated groups (100 and 300 mg/kg doses), there was a significant decrease (P = 0.002) in ovarian weight as compared with the control as indicated in [Table - 2].

Effect on ovarian cholesterol level (right ovary)

The mean ovarian cholesterol level in group II (100 mg/kg dose) showed a significant increase (P = 0.021) when compared with the control group, but there was no significant change in cholesterol level in group III (300 mg/kg dose) as shown in [Table - 2].

Effect on histopathological changes (left ovary)

Section of the ovaries in the control group showed primordial, primary, graafian, ruptured follicles, and corpus luteum in the ovarian stroma along with blood vessels, adjacent fibrous areas with mature adipose tissue [Figure - 2]a. In group II, ovarian sections showed only primordial, primary and secondary follicles but were devoid of graafian and ruptured follicles [Figure - 2]b. In group III, 50% of the ovarian sections had histopathological features same as in control group and remaining 50% were devoid of graafian follicles, ruptured follicles, and corpus luteum.

Abortifacient effect

The mean percentage of abortion with 100 and 300 mg/kg doses were significantly increased (P = 0.008 and P = 0.006, respectively) when compared with the control group as indicated in [Table - 3]. There was atrophy and a decrease in the number of fetuses in the drug- treated groups [Figure - 3]b and c.

Discussion

The effect of ethanolic extract of A. catechu on the duration of different phases of estrus cycle, ovarian weight, cholesterol level, and histopathology were studied in rats. During estrus cycle many physiological, biochemical, morphological, and histological changes occur in the ovaries. Follicular growth and ovulation are regulated by endocrine (follicle stimulating hormone, luteinizing hormone, and prolactin) and ovarian hormones (such as progestin, estrogen, and androgen). Ovarian hormones are produced by different cell types of the ovary like granulosa cells of the mature follicles and the corpus luteum. [18] Imbalance in these hormones leads to irregularity in the ovarian functions and duration of the estrus cycle. [19]

In our study, the number of days the rats of groups II and III spent in the estrus cycle showed a significant decrease in the median duration of estrus and metestrus phases ( as compared to the control group). Reduction in the estrus and metestrus phases indicates nonavailability of the matured graafian follicles or nonmaturation of secondary follicles. Therefore, ovulation was inhibited. There was an increase in the mean number of days the rats spent in proestrus phase in groups II and III, which was significant as compared with the control group. The prolongation of the proestrus phase indicates that maturation of the follicles in the preovulatory phase was delayed leading to nonmaturation of graafian follicles. This was due to nonavailability of estrogen produced by the granulosa cells which is essential for the maturation and differentiation of the ovarian follicles, or imbalance in the endogenous steroid, protein, and hormones. This result was further supported by the histopathological studies [Figure - 2]b, in which the transverse section of the ovaries in the drug-treated groups showed the presence of mainly primordial follicles, primary follicles, and secondary follicles in the ovarian stroma along with dilated blood vessels, fibrous, and adipose tissues. In the control group, ovarian sections showed in addition to above, graafian follicles, ruptured follicles, and corpus luteum, which indicates that ovulation has taken place and there was no hormonal imbalance [Figure - 2]a.

Ovary consists of aggregation of three endocrine tissues, the stroma, the follicle, and corpus luteum. The weight of these tissues constitutes the net weight of the ovary. During the estrus cycle, the weight of the ovarian tissue increases under the influence of gonadotrophic and steroidal hormones. There was a significant decrease in the weight of ovaries in groups II and III as compared with the control group, which indicates a decrease in the activity of the stroma, the follicle, and the corpus luteum in the ovary. This decrease may be due to the nonavailability of gonadotrophic or steroidal hormones or both. [20]

Cholesterol is the precursor for the steroidogenesis of ovarian endocrine tissues, estrogens, progestins, and androgens. The significant increase in ovarian cholesterol in group II when compared with the control group, indicates that cholesterol is not utilized for steroidogenesis. [20] There was no significant increase in the ovarian cholesterol level in group III as compared to control group.

Insufficient progesterone secretion by the corpus luteum or placenta, also termed a luteal phase defect, has been suggested to cause abortion. [21] Therefore, this could be a possible cause for the significant increase in percentage of abortion and abortifacient effect seen in drug-treated groups. Habit of chewing betel nut may cause abortion or disturb normal gestation. Hence, awareness needs to be developed among female populations about the health hazards of betel nut.

Conclusion

All the parameters in this study showed that the alcoholic extract of A. catechu has antiovulatory and abortifacient effects.

References

1.Smith EM, Hammonds M, Clark MK, Kirchner HL, Fuortes L. Occupational Exposures and Risk of Female Infertility. J Occup Environ Med 1997;39:138-46.  Back to cited text no. 1    
2.Hage ML, Frazier LM. In normal reproductive and developmental biology. New York: Reproductive Hazards of the Workplace; 1998. p. 3.  Back to cited text no. 2    
3.Grodstein F, Goldman MB, Cramer DW. Infertility in women and moderate alcohol use. Am J Public Health 1994;84:1429-32.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Cramer DW, Barbieri RL, Xu H, Reichart, JKV. Determinants of basal follicle stimulating hormone levels in premenopausal women. J Clin Endocrinol Metab 1994;79:1105-9.  Back to cited text no. 4    
5.Bolumar F, Olsen J, Rebagliato M, Bisanti L. Caffeine intake and delayed conception: A European multicenter study on infertility and subfecundity. European Study Group on Infertility Subfecundity. Am J Epidemiol 1997;145:324-34.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Sowers MR, Crawford S, McConnell DS, Randolph JF Jr, Gold EB, Wilkin ML, et al. Selected diet and lifestyle factors are associated with estrogen metabolites in a multiracial/ethnic population of women. J Nutr 2006;136:1588-95.  Back to cited text no. 6    
7.Azeez S, Amudhan S, Adiga S, Vasanthakumar A, Rao N, Udupa AL, Sanath H. Wound healing profile of Areca catechu extracts on different wound models in wistar rats. Kuwait Med J 2007;39:48-52.   Back to cited text no. 7    
8.Pimolpan P, Saruth N, Rapepol B. Hepatoprotective potential of extracts from seeds of Areca catechu and Nutgalls of Quercus infectoria. Molecules 2009;14:4987-5000.  Back to cited text no. 8    
9.Chempakam B. Hypoglycemic activity of arecoline in betel nut Areca catechu L. Indian J Exp Biol 1993;31:474-5.  Back to cited text no. 9  [PUBMED]  
10.Nadkarni KM. Indian Materia Medica. 2 nd ed. Bombay: Popular Book Department; 1954. p. 219-21.  Back to cited text no. 10    
11.Duke JA, editor. Handbook of Medicinal Herbs. 2 nd ed. Florida: CRC Press; 2002.  Back to cited text no. 11    
12.Azeez S, Amudhan MS. Pharmacological uses of areca nut. Central Plantation Crops Research Institute 2006. p. 40-2.  Back to cited text no. 12    
13.Shanbhag T, Sharma C, Adiga S, Bairy KL, Shenoy S, Shenoy G. Wound healing activity of alcoholic extract of Kaempferia galanga in Wistar rats. Indian J Physiol Pharmacol 2006;50:384-90.  Back to cited text no. 13    
14.Ghosh MN. Fundamentals of Experimental Pharmacology. 3 rd ed. Kolkata: Hilton and Company; 2005. p. 193-4.  Back to cited text no. 14    
15.Shanbhag T, Bairy KL, Kulkarni DR. Drug screening and fallibility of intraperitoneal route. Indian Drugs 1990;27:604-6.  Back to cited text no. 15    
16.Koneri R, Balaram R, Saraswati CD. Antiovulatory and abortifacient potential of the ethanolic extract of roots of Momordica cymbalaria fenzl in rats. Indian J Pharmacol 2006;38:111-4.  Back to cited text no. 16    Medknow Journal
17.Sharma JD, Sharma L, Yadav P. Antifertility efficacy of Piper betel Linn. (Petiole) on female albino rats. Asian J Exp Sci 2007;21:145-50.  Back to cited text no. 17    
18.Guraya SS. Fundamentals and Biomedical Implications. New Delhi: Narosa Publishing House; 1998. p. 10-346.  Back to cited text no. 18    
19.Circosta C, Sanogo R. Occhiuto procera on estrous cycle and on estrogenic functionality in rats. Farmaco 2001;56:373-8.  Back to cited text no. 19    
20.Shivalingappa H, Satyanarayan ND, Purohit MG, Sharanabasppa A, Patil SB. Effect of ethanol extract of Rivea hypocrateriformis on the estrous cycle of the rat. J Ethnopharmacol 2002;82:11-7.  Back to cited text no. 20    
21.Schorge JO, Schaffer JI, Halrorson LM, et al. Williams Gynecology. China: The Mc Graw-Hill companies; 2008. p. 137-40.  Back to cited text no. 21    

Copyright 2010 - Indian Journal of Pharmacology

Indian Journal of Pharmacology, Vol. 42, No. 5, September-October, 2010, pp. 306-311

Research Article

Antiovulatory and abortifacient effects of Areca catechu (betel nut) in female rats

1 Department of Pharmacology, Kasturba Medical College, Manipal, Manipal University, Karnataka, India
2 Department of Biochemistry, Kasturba Medical College, Manipal, Manipal University, Karnataka, India

Correspondence Address: Tara Shanbhag, Department of Pharmacology, Kasturba Medical College, Manipal, Manipal University, Karnataka India, tarashanbhag7@yahoo.co.in

Date of Submission: 08-Apr-2010
Date of Decision: 29-Jun-2010
Date of Acceptance: 16-Jul-2010

Code Number: ph10089

DOI: 10.4103/0253-7613.70350

Abstract

Objectives : To study the antiovulatory and abortifacient effects of ethanolic extract of Areca catechu in female rats.
Materials and Methods
: For antiovulatory effect, ethanolic extract of A. catechu at 100 and 300 mg/kg doses was administered orally for 15 days. Vaginal smears were examined daily microscopically for estrus cycle. Rats were sacrificed on 16 th day. Ovarian weight, cholesterol estimation, and histopathological studies were done. Abortifacient activity was studied in rats at 100 and 300 mg/kg doses administered orally from 6 th to 15 th day of pregnancy. Rats were laparotomised on 19 th day. The number of implantation sites and live fetuses were observed in both horns of the uterus.
Results
: The extract of A. catechu showed a significant decrease in the duration of estrus at 100 mg/kg (P = 0.015) and 300 mg/kg doses (P = 0.002) as compared with control. Metestrus phase was also significantly reduced at 100 mg/kg (P = 0.024) and 300 mg/kg doses (P = 0.002). There was a significant increase in proestrus (P < 0.001) phase. However, diestrus phase was unchanged. Histopathological study of the ovaries showed mainly primordial, primary, and secondary follicles in the test groups as compared to control. There was also a significant (P = 0.002) decrease in ovarian weight and a significant (P = 0.021) increase in ovarian cholesterol level at 100 mg/kg dose. In the study to evaluate abortifacient effect, the mean percentage of abortion with 100 and 300 mg/kg doses were 75.5% and 72.22%, respectively, which was significantly (P = 0.008 and P = 0.006, respectively) increased when compared with control.
Conclusion
: The ethanolic extract of A. catechu at doses of 100 and 300 mg/kg has antiovulatory and abortifacient effects.

Keywords: Abortifacient, Areca catechu, antiovulatory, implantation sites, ovarian cholesterol

Introduction

Infertility is one of the most common problems with significant medical, psychosocial, and economic implications. There are various factors responsible for male and female infertility. Environmental factors are also responsible like volatile organic solvents or silicones, biological agents (viruses, parasites), physical agents (radiation, exposure to electric shock, excessive vibration, or heat), [1] chemical dust, pesticides; [2] alcohol, [3] smoking, [4] caffeine consumption, [5],[6] areca nut chewing, [7] etc. Chewing the mixture of areca nut and betel leaf is a tradition, custom, or ritual, which dates back thousands of years from South Asia to the Pacific region. It has now been established that areca nut use causes variety of health hazards including precancerous lesions in mouth. Use of areca nut is common among female population also. Areca nut is most commonly chewed as a constituent of betel quid. The betel quid is a mixture of betel leaf, areca nut, and slaked lime (calcium hydroxide). The important constituents of areca nut are tannins (15%), gallic acids, oily matter (fat 14%), gum and three main alkaloids arecoline (0.07%), arecaine (1%), and guracine, which have the property of vasoconstriction. Arecaidine, guvacoline, guvacine, and choline are present in traces only. Pharmacological actions of arecoline resembles that of muscarine and pilocarpine. Dried areca nut has hepatoprotective, [8] hypoglycemic, [9] astringent, vermifugal, sialogogue, [10] antibacterial, antioxidant, antiseptic, bronchostimulant, euphorient, and wound-healing properties. [7] In addition, it has abortifacient, anti-implantation, and antifertility activities. [11] Studies have revealed that areca nut in male albino rats of Wistar strain causes morphofunctional changes such as stimulation of hormonogenesis and disruption of spermatogenesis. [12] A survey of literature revealed that antifertility effect of areca nut has not been documented in female albino rats. Hence, this study was undertaken to evaluate antiovulatory and abortifacient effects of A. catechu in female albino rats.

Materials and Methods

Plant material and extraction [13]

The nuts of Areca catechu were purchased from local market, chopped into small pieces, and dried under the sun for few days. The dried chopped nuts were powdered and defatted in petroleum ether. The residue was hot extracted in soxhlet apparatus (Tensil Glass Works, Bangalore, India) using 400 mL of 70% ethanol (Qualigens Fine Chemicals, Mumbai, India) for five cycles. This extract was filtered, lyophilized, and concentrated over a water bath to obtain dried extract. This extract was stored in a desiccator (Quality Traders, Eranakulum, Kerala). A suspension of the extract in 4% gum acacia (Nice Chemicals, Cochin, India) was used for the study.

Acute toxicity study

Acute toxicity was done in female albino rats of Wistar strain weighing 150-200 g. Rats were fasted overnight. They were divided into six groups of two rats each. The alcoholic extract of betel nut was administered through the feeding tube to each group in ascending and widely spaced doses, namely 10, 30, 100, 300, 1000, and 3000 mg/kg (p.o.). The rats were observed continuously for 2 h and then occasionally for further 4 h, and finally overnight mortality was recorded. [14] No signs of toxicity were observed even with 3000 mg/kg of ethanolic extract of A. catechu. Therefore, two doses of the extract were chosen, 300 mg/kg corresponding to one-tenth of the maximum tolerated dose (3000 mg/kg) and the other was 100 mg/kg.

Animals

The experimental protocol was approved by Institutional Animal Ethics Committee. The rats were maintained under standard conditions in animal house approved by the Committee for the purpose of Control and Supervision of Experiments on Animals (CPCSEA). The temperature was 23 ± 2ºC and humidity was 50 ± 5%. Mature, healthy female albino rats weighing 150-200 g were used. They were provided with standard rat feed (Amrut lab animal feed, Pranav Agro Industries Ltd., Sangli, Maharashtra) and water ad libitum.

Estrus cycle

Phases of estrus cycle of each female rat used for study of antiovulatory and abortifacient effects were determined by observing vaginal smear daily between 9 and 10 AM continuously for 15 days. Vaginal smear was prepared by introducing a drop of distilled water into the vagina with the help of a dropper, collecting back and placing it on a clean slide after adding a drop of glycerin. [15] The prepared smear was examined microscopically under low power for different types of cells [Figure - 1]. There are four phases in estrus cycle of rat. If majority of cells are leucocytes, then it was labeled as in diestrus phase [Figure - 1]a. Presence of large number of nucleated cells indicated proestrus phase [Figure - 1]b. Estrus phase was confirmed when the smear showed more than 50% cornified epithelial cells [Figure - 1]c. Metestrus phase was indicated by the presence of many neutrophils and scattered squamous epithelial cells in the smear [14] [Figure - 1]d. Rats exhibiting three consecutive regular estrus cycles were chosen for the study.

Antiovulatory effect

This was studied by observing the effect of A. catechu on the duration of phases of estrus cycle, estimation of ovarian weight and cholesterol. The rats with three regular estrus cycles were divided into three groups of six each. Rats were grouped in such a way that all the groups were in estrus phase at the start of treatment. Rats in Group I received 2 mL of 4% gum acacia (p.o. daily) for 15 days and served as control. Groups II and III received ethanolic extract of A. catechu (p.o. orally) at 100 and 300 mg/kg body weight, respectively, for 15 days. Daily vaginal smears were observed in the morning between 9 and 10 AM. The number of days spent in each phase by each rat was calculated. Then average number of days spent in each phase by each group was calculated. At the end of the study, i.e. on the 16 th day, 24 h after the last dose, all the rats were killed by cervical dislocation. [16] Ovaries were dissected out, freed from extra deposition, and weighed. Right ovary from each rat was processed for cholesterol estimation and another for histopathological study. [17]

Cholesterol estimation

Ovarian tissue was weighed and homogenized in cold saline to get uniform suspension (1:20 ratio that is 20 ΅L of saline was added per milligram of tissue). Cholesterol was estimated using manual kit supplied by Aspen Laboratory Pvt. Ltd., Delhi. Values were expressed as microgram/milligram of ovary.

Abortifacient effect

Rats exhibiting three consecutive regular estrus cycles were chosen for the study. The female rats in proestrus phase were mated with male rats of known fertility in the ratio of 2:1 in the evening. Vaginal smears were examined in the following morning for the presence of sperms to confirm mating. The pregnancy rate was 100%. Female rats exhibiting thick clumps of spermatozoa in the vaginal smear were chosen for the study and that day was considered as day one of pregnancy. Eighteen pregnant rats were divided into three groups of six each. Group I served as a control, which received 2mL of 4% gum acacia (p.o. daily). Groups II and III received ethanolic extract of A. catechu (p.o. daily) at 100 and 300 mg/kg body weight, respectively, from 6 th to 15 th day of pregnancy which is the period of organogenesis. On 19 th day of pregnancy, all the rats were laparotomised under light ether anesthesia. The number of implantation sites and live fetuses were noted in both horns of the uterus. [16] The observations of the drug-treated groups were compared with control group.

Percentage of abortion was calculated by the formula:

Statistical analysis

Results were expressed as mean with standard deviation for data following normal distribution and median with interquartile range for skewed data. P < 0.05 was considered statistically significant. The differences between experimental groups were compared using one-way ANOVA followed by Tukey′s post hoc test and also Kruskal-Wallis H-test followed by Mann-Whitney test with Bonferroni correction for skewed data.

Results

Acute toxicity studies

Mortality and behavioral changes were not observed in the acute toxicity study till the dose of 3000 mg/kg. Therefore, two doses (100 and 300 mg/kg) were selected for the study.

Antiovulatory effect

Effect on the estrus cycle

The number of days the rats spent in proestrus phase in groups II and III was significantly (P < 0.001) higher as compared with the control group. There was also a significant decrease in the median duration of the estrus at 100 mg/kg (P = 0.015) and 300 mg/kg doses (P = 0.002) as compared to the control. Metestrus phase was also significantly reduced at 100 (P = 0.024) and 300 mg/kg doses (P = 0.002) as compared to the control. However, there was no significant change in the duration of the diestrus phase between the groups as shown in [Table - 1].

Effect on ovarian weight (right ovary)

In drug-treated groups (100 and 300 mg/kg doses), there was a significant decrease (P = 0.002) in ovarian weight as compared with the control as indicated in [Table - 2].

Effect on ovarian cholesterol level (right ovary)

The mean ovarian cholesterol level in group II (100 mg/kg dose) showed a significant increase (P = 0.021) when compared with the control group, but there was no significant change in cholesterol level in group III (300 mg/kg dose) as shown in [Table - 2].

Effect on histopathological changes (left ovary)

Section of the ovaries in the control group showed primordial, primary, graafian, ruptured follicles, and corpus luteum in the ovarian stroma along with blood vessels, adjacent fibrous areas with mature adipose tissue [Figure - 2]a. In group II, ovarian sections showed only primordial, primary and secondary follicles but were devoid of graafian and ruptured follicles [Figure - 2]b. In group III, 50% of the ovarian sections had histopathological features same as in control group and remaining 50% were devoid of graafian follicles, ruptured follicles, and corpus luteum.

Abortifacient effect

The mean percentage of abortion with 100 and 300 mg/kg doses were significantly increased (P = 0.008 and P = 0.006, respectively) when compared with the control group as indicated in [Table - 3]. There was atrophy and a decrease in the number of fetuses in the drug- treated groups [Figure - 3]b and c.

Discussion

The effect of ethanolic extract of A. catechu on the duration of different phases of estrus cycle, ovarian weight, cholesterol level, and histopathology were studied in rats. During estrus cycle many physiological, biochemical, morphological, and histological changes occur in the ovaries. Follicular growth and ovulation are regulated by endocrine (follicle stimulating hormone, luteinizing hormone, and prolactin) and ovarian hormones (such as progestin, estrogen, and androgen). Ovarian hormones are produced by different cell types of the ovary like granulosa cells of the mature follicles and the corpus luteum. [18] Imbalance in these hormones leads to irregularity in the ovarian functions and duration of the estrus cycle. [19]

In our study, the number of days the rats of groups II and III spent in the estrus cycle showed a significant decrease in the median duration of estrus and metestrus phases ( as compared to the control group). Reduction in the estrus and metestrus phases indicates nonavailability of the matured graafian follicles or nonmaturation of secondary follicles. Therefore, ovulation was inhibited. There was an increase in the mean number of days the rats spent in proestrus phase in groups II and III, which was significant as compared with the control group. The prolongation of the proestrus phase indicates that maturation of the follicles in the preovulatory phase was delayed leading to nonmaturation of graafian follicles. This was due to nonavailability of estrogen produced by the granulosa cells which is essential for the maturation and differentiation of the ovarian follicles, or imbalance in the endogenous steroid, protein, and hormones. This result was further supported by the histopathological studies [Figure - 2]b, in which the transverse section of the ovaries in the drug-treated groups showed the presence of mainly primordial follicles, primary follicles, and secondary follicles in the ovarian stroma along with dilated blood vessels, fibrous, and adipose tissues. In the control group, ovarian sections showed in addition to above, graafian follicles, ruptured follicles, and corpus luteum, which indicates that ovulation has taken place and there was no hormonal imbalance [Figure - 2]a.

Ovary consists of aggregation of three endocrine tissues, the stroma, the follicle, and corpus luteum. The weight of these tissues constitutes the net weight of the ovary. During the estrus cycle, the weight of the ovarian tissue increases under the influence of gonadotrophic and steroidal hormones. There was a significant decrease in the weight of ovaries in groups II and III as compared with the control group, which indicates a decrease in the activity of the stroma, the follicle, and the corpus luteum in the ovary. This decrease may be due to the nonavailability of gonadotrophic or steroidal hormones or both. [20]

Cholesterol is the precursor for the steroidogenesis of ovarian endocrine tissues, estrogens, progestins, and androgens. The significant increase in ovarian cholesterol in group II when compared with the control group, indicates that cholesterol is not utilized for steroidogenesis. [20] There was no significant increase in the ovarian cholesterol level in group III as compared to control group.

Insufficient progesterone secretion by the corpus luteum or placenta, also termed a luteal phase defect, has been suggested to cause abortion. [21] Therefore, this could be a possible cause for the significant increase in percentage of abortion and abortifacient effect seen in drug-treated groups. Habit of chewing betel nut may cause abortion or disturb normal gestation. Hence, awareness needs to be developed among female populations about the health hazards of betel nut.

Conclusion

All the parameters in this study showed that the alcoholic extract of A. catechu has antiovulatory and abortifacient effects.

References

1.Smith EM, Hammonds M, Clark MK, Kirchner HL, Fuortes L. Occupational Exposures and Risk of Female Infertility. J Occup Environ Med 1997;39:138-46.  Back to cited text no. 1    
2.Hage ML, Frazier LM. In normal reproductive and developmental biology. New York: Reproductive Hazards of the Workplace; 1998. p. 3.  Back to cited text no. 2    
3.Grodstein F, Goldman MB, Cramer DW. Infertility in women and moderate alcohol use. Am J Public Health 1994;84:1429-32.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Cramer DW, Barbieri RL, Xu H, Reichart, JKV. Determinants of basal follicle stimulating hormone levels in premenopausal women. J Clin Endocrinol Metab 1994;79:1105-9.  Back to cited text no. 4    
5.Bolumar F, Olsen J, Rebagliato M, Bisanti L. Caffeine intake and delayed conception: A European multicenter study on infertility and subfecundity. European Study Group on Infertility Subfecundity. Am J Epidemiol 1997;145:324-34.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Sowers MR, Crawford S, McConnell DS, Randolph JF Jr, Gold EB, Wilkin ML, et al. Selected diet and lifestyle factors are associated with estrogen metabolites in a multiracial/ethnic population of women. J Nutr 2006;136:1588-95.  Back to cited text no. 6    
7.Azeez S, Amudhan S, Adiga S, Vasanthakumar A, Rao N, Udupa AL, Sanath H. Wound healing profile of Areca catechu extracts on different wound models in wistar rats. Kuwait Med J 2007;39:48-52.   Back to cited text no. 7    
8.Pimolpan P, Saruth N, Rapepol B. Hepatoprotective potential of extracts from seeds of Areca catechu and Nutgalls of Quercus infectoria. Molecules 2009;14:4987-5000.  Back to cited text no. 8    
9.Chempakam B. Hypoglycemic activity of arecoline in betel nut Areca catechu L. Indian J Exp Biol 1993;31:474-5.  Back to cited text no. 9  [PUBMED]  
10.Nadkarni KM. Indian Materia Medica. 2 nd ed. Bombay: Popular Book Department; 1954. p. 219-21.  Back to cited text no. 10    
11.Duke JA, editor. Handbook of Medicinal Herbs. 2 nd ed. Florida: CRC Press; 2002.  Back to cited text no. 11    
12.Azeez S, Amudhan MS. Pharmacological uses of areca nut. Central Plantation Crops Research Institute 2006. p. 40-2.  Back to cited text no. 12    
13.Shanbhag T, Sharma C, Adiga S, Bairy KL, Shenoy S, Shenoy G. Wound healing activity of alcoholic extract of Kaempferia galanga in Wistar rats. Indian J Physiol Pharmacol 2006;50:384-90.  Back to cited text no. 13    
14.Ghosh MN. Fundamentals of Experimental Pharmacology. 3 rd ed. Kolkata: Hilton and Company; 2005. p. 193-4.  Back to cited text no. 14    
15.Shanbhag T, Bairy KL, Kulkarni DR. Drug screening and fallibility of intraperitoneal route. Indian Drugs 1990;27:604-6.  Back to cited text no. 15    
16.Koneri R, Balaram R, Saraswati CD. Antiovulatory and abortifacient potential of the ethanolic extract of roots of Momordica cymbalaria fenzl in rats. Indian J Pharmacol 2006;38:111-4.  Back to cited text no. 16    Medknow Journal
17.Sharma JD, Sharma L, Yadav P. Antifertility efficacy of Piper betel Linn. (Petiole) on female albino rats. Asian J Exp Sci 2007;21:145-50.  Back to cited text no. 17    
18.Guraya SS. Fundamentals and Biomedical Implications. New Delhi: Narosa Publishing House; 1998. p. 10-346.  Back to cited text no. 18    
19.Circosta C, Sanogo R. Occhiuto procera on estrous cycle and on estrogenic functionality in rats. Farmaco 2001;56:373-8.  Back to cited text no. 19    
20.Shivalingappa H, Satyanarayan ND, Purohit MG, Sharanabasppa A, Patil SB. Effect of ethanol extract of Rivea hypocrateriformis on the estrous cycle of the rat. J Ethnopharmacol 2002;82:11-7.  Back to cited text no. 20    
21.Schorge JO, Schaffer JI, Halrorson LM, et al. Williams Gynecology. China: The Mc Graw-Hill companies; 2008. p. 137-40.  Back to cited text no. 21    

Copyright 2010 - Indian Journal of Pharmacology


The following images related to this document are available:

Photo images

[ph10089t2.jpg] [ph10089f1.jpg] [ph10089f3.jpg] [ph10089t3.jpg] [ph10089f2.jpg] [ph10089t1.jpg]
Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil