search
for
 About Bioline  All Journals  Testimonials  Membership  News


African Journal of Traditional, Complementary and Alternative Medicines
African Ethnomedicines Network
ISSN: 0189-6016
Vol. 5, Num. 3, 2008, pp. 278-289
African Journal of Traditional, Complimentary and Alternative Medicines, Vol. 5, No. 3, 2008, pg. 278-289

Inhibition Of Microsomal Lipid Peroxidation And Protein Oxidation By Extracts From Plants Used In Bamun Folk Medicine (Cameroon) Against Hepatitis

Frederic N. Njayou1, Paul F. Moundipa1*, Angèle N. Tchana1, Bonaventure T. Ngadjui2, Félicité M. Tchouanguep2.

1Department of Biochemistry; University of Yaounde I; 2Department of Organic Chemistry, University of Yaounde I, 3Department of Biochemistry, University of Dschang; Cameroon.
*E-mail: pmoundipa@hotmail.com

Code Number: tc08040

Abstract

The antioxidant activities of 53 medicinal plants used in Bamun Folk Medicine for the management of jaundice and hepatitis were investigated. The studies were done using rat hepatic microsomes for lipid peroxidation and bovine serum albumin (BSA) for carbonyl group formation. Silymarine was used as reference compound. Fifteen different extracts were effective at a dose of 200µg/ml in both experiments. Specifically, 25 extracts inhibited lipid peroxidation initiated non-enzymatically by ascorbic acid while 18 inhibited peroxidation as determined by reduced Nicotinamide Adenine Dinucleotide Phosphate (NADPH). The inhibitory concentration 50 (IC50) of 23 different plant extracts was lower than 200µg/ml in the microsomal lipid peroxidation inhibition study. Fifteen of the 23 extracts were active in preventing protein oxidation by inhibiting the formation of the carbonyl group on BSA with an IC50 value less than 200µg/ ml. The results suggest that the antioxidant activity of the extracts, may be due to their ability to scavenge free radicals involved in microsomal lipid peroxidation or in protein oxidation. These biochemical processes are involved in the aetiology of toxic hepatitis.

Key words: lipid peroxidation, protein oxidation, medicinal plants, Bamun, toxic hepatitis.

Introduction

Lipid peroxidation and protein oxidation are reported to be involved in the aetiology of several human diseases such as atherosclerosis, ischemia-reperfusion injury, ageing, and liver-related diseases (Dean et al., 1997; Aruoma, 1998). In paracetamol- and CCl4-induced hepatitis particularly, the most widely used animal models for the study of the hepatocurative or preventive effect of many medicinal plants (Lin et al., 1995; Shenoy et al., 2001; James et al., 2003), lipid peroxidation and protein oxidation play the main role in the development of the disease (Recknagel, 1983; Fleurentin and Joyeux, 1990; Vuletich and Osawa, 1998; Michael et al., 1999). Thus, the inhibition of these oxidation phenomena may be important for the alleviation of the resulting diseases.

In the Bamun folk medicine, quite a number of plants are reported to be used for the treatment of hepatitis and other liver related-diseases (Mongbet, 1975, Moundipa et al., 2001). However, for a good number, no report is available to prove their therapeutic activity. Since toxic hepatitis is often associated with the oxidative destruction of lipids and proteins, the plants used by the Bamun in order to alleviate liver-related diseases may contain compounds which protect lipids and proteins from oxidation since such compounds have been suggested as prophylactic agents (Aruoma, 1997).

Therefore, the present work was aimed at identifying among these plants, those that are potentially active in the protection of biomolecules of the liver and other organs against oxidation. Thus, the inhibitory effect of their respective extracts on the course of lipid peroxidation induced non-enzymatically or enzymatically in rat liver microsomes has been assessed. We also assayed the inhibitory action of these extracts on the hydroxyl-mediated oxidation of bovine serum albumin (BSA).

Materials and Methods

Chemicals:  All reagents used in this study were purchased from Sigma Chemicals Company (St. Louis, MO, USA) and Prolabo (Paris, France).

Plant extracts:  Fifty-four plants were used in this study, selected according to a previous survey carried out in the Bamun region (Moundipa et al., 2002). The parts used were either the bark, the leaves, tubers or rhizomes. The air-dried and powdered parts (50g) of each plant were extracted by maceration with a mixture of methanol-methylene chloride (200ml, v/v) for 24 hrs with constant shaking. The plant extracts were evaporated to dryness under vacuum, the yield computed and the residue kept at –40°C for pharmacological studies.

Screening of lipid peroxidation and protein inhibitory activities

Lipid peroxidation assay

 Male Wistar rats weighing 180 – 200g were sacrificed by cerebral dislocation after overnight fasting.  The liver was removed and homogenised in ice cold 150mM KCl solution.  Liver microsomes were isolated by the calcium aggregation procedure as described by Garle and Fry (1989). Protein concentration in the microsomal suspension was assayed by the Bradford method (Bradford, 1976) using BSA as standard.  The resulting suspension was diluted to 10mg of microsomal protein/ml in buffer (25mM Tris-HCl, 115mM KCl, pH 7.5), and stored at –40°C. Experiments were carried out according to the method described by Ulf et al., (1989). Silymarine and plant extract concentrations were tested at 10, 100 and 200µg/ml. Lipid peroxidation was initiated non-enzymatically using ascorbate or enzymatically by NADPH (only for plant extracts for which IC50 was less than 200µg/ml). The reaction mixture consisted of microsomes (0.4mg protein/ml), plant extract and 0.5mM ascorbate or 0.3mM NADPH in 25mM Tris-HCl buffer, pH 7.5 containing 115mM KCl. The reaction was initiated by the addition of 1.5µM Fe2+ (in the form of (NH4)2Fe(SO4)2)complexed with 1mM ADP. After the incubation period (15 min, 37°C), the reaction was stopped by the addition of thiobarbituric acid reagent. The samples were then assayed for thiobarbituric acid-reactive substances (TBA-RS) as described by Wills (1987). Lipid peroxidation was expressed as the change in absorbance of TBA-RS at 530nm. The amount of TBA-RS which existed in the mixture before the peroxidation reaction was substracted from the value obtained.

BSA oxidation assay

 BSA was oxidised by a Fenton-type reaction (Martinez et al., 2001). The reaction was carried out in 2ml polypropylene tubes with lids. Plant extracts were added to the medium and, after incubation and protein precipitation by TCA, the mixture was centrifuged (3000g, 4°C, 5 min) and the pellet used for protein carbonyl content determination. This was assayed as a 2,4-dinitrophenylhydrazine (DNPH) derivative by of the method described by Martinez et al., (2001) with some modifications. After extraction and a second precipitation of the precipitate, the protein pellets were dissolved in 1ml of 6M urea and centrifuged (3000g, 4°C, 5 min). The different spectra of the DNPH derivatives were obtained at 372nm.

Phytochemical studies

Groups of phytochemical compounds (flavonoids, polyphenols, leucoanthocyanins, alkaloids, tannins, triterpens and sterols, anthranoids) were tested for their presence in each extract using commonly accepted phytochemical methods (Bruneton, 1999).

Calculations

Different IC50 values were estimated using the EPA probit analyses, on computer program version 1.3 used by C. Stephen of the Duluth USEPA, Research Laboratory.

Results

Lipid peroxidation and protein inhibitory activities of extracts

Inhibition of microsomal lipid peroxidation

The respective inhibition percentages (IP) obtained for each extract are shown in Table 1. These values varied considerably for the different plant extracts. For each extract, this variation also depended on the mode of initiation of peroxidation. Based on the IP, in the non-enzymatical microsomal lipid peroxidation system, at a concentration of 200µg/ml, plant extracts with values equal to or above 50 were selected for further experiments with the Fe(II)-NADPH system. Twenty-five extracts were thus selected and tested in the system where the reaction was sustained by NADPH. Of these, only 18 extracts were active with an IP value above 50 at 200µg/ml (Table 1). Table 3 presents the IC50 values of different plant extracts according to the mode of initiation the lipid peroxidation reaction.

Inhibition of BSA oxidation

 The IP values of hydroxyl-mediated oxidation of BSA are presented in Table 2 and the IC50 in Table 3. The values of the former varied between different extracts. Only 26 different plant extracts were active above 50 at 200µg/ml.

Groups of compounds in different plant extracts

The phytochemical studies of plant extracts active in inhibiting microsomal lipid peroxidation or/and protein oxidation revealed the presence of flavonoids, polyphenols, alkaloids, among other classes of compounds as shown in Table 4.

Discussion

In many traditional practices, there are medicines used for the treatment of liver-related diseases (Fleurentin and Joyeux, 1990). These medicines are generally based on medicinal plants and their systematical screenings often permit leads to the identification of the effective plants (Joyeux et al., 1990, Lin et al., 1995).

Extracts of plants under study were tested for their microsomal lipid peroxidation and protein oxidation inhibitory activities. On the whole, the active extracts inhibited both biochemical processes in a dose-dependent manner. Similar results were obtained by Czinnera et al. (2001) on the action of Helichrysi flos regarding the inhibition of microsomal lipid peroxidation.

In the present study, plant extracts inhibiting both oxidation phenomena with an IC50 less than 200µg/ml were considered as possessing a high protein and lipid oxidation inhibitory potential. In this respect, Mangifera indica, Enantia chlorantha, Voacanga africana, Aspilia africana, Senna alata, Piliostigma thonningii (bark), Piliostigma thonningii (leaves), Kalonchoe crenata, Alchornea laxiflora, Crotalaria lachnophora, Erythrina senegalensis, Khaya grandifoliola, Entada africana, Melinis minutiflora and Curcuma longa (Table 2) were found to be active.Among these active plant species, some of them, namely E. chlorantha (Virtanen et al., 1993), E. africana (Sanogo et al., 1998) and C. longa (Pulla and Lokesh, 1994; Sreejayan and Rao, 1994; Ruby et al., 1995), have been reported to be active against experimentally induced hepatitis. M. indica on its part, has been shown to be very effective against lipid and protein oxidation in vitro and injury associated to hepatic ischemia reperfusion (Martinez et al., 2001; Sanchez et al., 2000). Concerning S. alata, the choleretic effect of its extract on rats was demonstrated by Assane et al. (1993).

The protection of the hydroxyl-mediated oxidation of BSA takes place essentially by reducing the H2O2 concentration, a fundamental component in Fenton-type reaction, by chelating iron or by scavenging the hydroxyl radical formed on the immediate side of the target protein during oxidation (Kingu and Wei, 1997). This may suggest that these plant extracts are able to scavenge hydroxyl radical or chelate iron. The inhibitory effect against the free radical-mediated degradation of BSA and the microsomal lipid peroxidation by plant extracts mentioned above may also be attributed to flavonoids and polyphenols as many of these phytoconstituents are known to be antioxidants (Faurè et al., 1990; Markus, 1996; Middleton et al., 2000). The presence of these two families of compounds was revealed in all the above cited plant extracts. This is in accordance with phytochemical screening done by Noguchi et al. (1994) and Wandji et al., (1994) respectively on Curcuma longa and Erythrina senegalensis. However, in extracts from Enantia chlorantha and Voacanga africana which also inhibited both studied biochemical phenomena the presence of alkaloids was also demonstrated.

Table 1: Inhibition percentages of microsomal lipid peroxidation of different plants extracts and initiation modes.

Species

 Family

Inhibition percentage

Fe(II)-Ascorbate1

Fe(II)- NADPH1

Concentrations of plant extracts (µg/mL)

Concentrations of plant extracts (µg/mL)

10

100

200

10

100

200

Control silymarine

61.86 ± 2.61

86.81 ± 1.45

99.29 ± 3.23

62.15 ± 1.65

78.79 ± 3.54

99.40 ± 2.65

Eremomastas  speciosa (hochst.) Cufod

Acanthaceae

5.58 ± 1.23

15.01 ± 1.23

46.16 ± 0.35

Draceana  deisteliana Engl.

Agavaceae

-2.63 ± 0.48

-1.72 ± 1.45

-0.46 ± 0.00

Mangifera  indica Lin.

Anacardiaceae

5.46 ± 0.49

66.75 ± 0.33

75.35 ± 1.32

15.42 ± 1.17

60.56 ± 0.00

77.5 ± 0.40

Annona  senegalensis Pers.

Anonaceae

-3.76 ± 4.96

14.29 ± 0.35

16.17 ± 0.88

Enantia  chlorantha Oliv.

Anonaceae

33.25 ± 0.71

42.06 ± 0.52

53.97 ± 0.52

12.19±2.34

28.87±0.98

53.87±0.00

Voacanga africana Stapf

Apocynaceae

57.82 ± 1.05

100.00 ± 0.00

100.00±0.00

53.04±1.18

92.13±2.14

100.00±0.00

Xanthosoma  sagittifolium L. Schott

Araceae

1.37 ± 053

25.31±0.71

48.01 0.88

Polyscias fulva (Hiern.) Harms.

Araliaceae

-0.02 ± 0.00

-0.04±0.01

-0.01±0.27

Ageratum conyzoides Lin.

Asteraceae

-2.79 ± 1.00

-2.56±3.00

-9.31±3.29

Aspilia africana (Pers.) C.D. Adams

Asteraceae

18.26 ± 0.37

35.72±0.37

52.91±0.37

32.95±0.54

51.53±0.18

68.45±0.72

Bidens pilosa Lin.

Asteraceae

14.19±  0.33

39.82±2.91

50.92±1.38

4.86±1.37

33.06±0.39

52.92±0.59

Chrysanthellum americanum (Lin.) Vatke

Asteraceae

2.91 ± 0.00

22.89±0.19

17.20±1.12

Dichrocephala integrifolia (Lin.F ) O.Ktze

Asteraceae

1.24 ± 0.35

2.61±0.87

25.43±0.88

Emilia coccinia (Sims.) G. Don

Asteraceae

-7.15 ± 6.20

-5.77±3.19

-1.51±1.77

Sonchus oleraceus Lin.

Asteraceae

-0.75 ± 0.35

-5.71±0.35

31.02±0.35

Spilanthes filicaulis (Sch. et Th.) C.D. Adams

Asteraceae

9.18 ± 0.35

18.99±1.23

58.93±0.17

0.55±0.00

3.18±0.20

12.29±0.98

Vernonia amygdalina Del.

Asteraceae

0.93 ± 0.00

26.98±0.33

33.49±1.97

Dacryodes edulis (G.Don) H.Lam

Burseraceae

-0.26 ± 0.00

-6.75±1.68

-8.20±0.00

Carica papaya Lin.

Caricaceae

-3.38 ± 1.15

-4.07±3.78

-2.68±1.80

Senna alata (Lin.) Link

Cesalpilaceae

34.53 ± 0.94

71.30±0.56

88.50±0.56

46.44±0.18

92.37±0.00

100.00±0.00

Piliostigma thonningii (Sch.) M. Red.  (L)

Cesalpilaceae

32.84 ± 0.16

58.70±0.16

74.26±0.81

35.14±0.59

61.81±0.59

68.47±1.37

Piliostigma thonningii (Sch.) M. Red.  (B)

Cesalpilaceae

37.53 ± 0.33

64.99±3.56

78.03±0.33

40.56±1.58

60.70±0.59

67.50±0.00

Table 1 (continued): Inhibition percentages of microsomal lipid peroxidation of different plants extracts and initiation modes.

Terminalia glaucescens Planch.ex benth.

Combretaceae

2.10 ± 0.66

7.32±0.49

47.68±1.65

Ipomea batatas (Lin.) Lam

Convolvulaceae

2.10 ± 0.33

5.12±1.65

14.30±0.49

Kalonchoe crenata (Andr.) Haw.

Crasulaceae

17.18 ± 0.76

36.31±0.00

73.70±0.50

11.88±0.39

44.48±0.39

59.81±1.76

Alchornea laxiflora (benth.) Pax& K.H

Euphorbiaceae

58.07 ± 9.91

84.39±0.75

95.90±0.57

40.84±0.39

65.42±1.77

79.17±1.57

Manihot esculenta Crantz

Euphorbiaceae

-1.15 ± 0.64

-0.46±0.00

-4.80±0.00

Crotalaria lachnophora Hochst.ex A.R.

Fabaceae

22.54 ± 0.76

84.26±0.50

97.41±0.37

38.26±1.37

68.37±1.75

74.45±0.98

Erythrina senegalensis D.C

Fabaceae

39.32 ± 3.79

75.20±2.12

94.25±0.71

35.91±0.78

61.33±3.91

75.69±0.40

Harungana  madagascariensis Lam.

Hypericaceae

13.60 ± 0.50

71.38±1.01

81.75±0.00

31.08±0.59

67.96±0.39

76.25±0.39

Gladiolus dalenii Van Geel

Iridaceae

-0.36 ± 0.25

-3.94±0.25

-8.23±1.27

Occimum Gratissimum Lin.

Labieae

14.99 ± 0.16

55.38±1.62

68.01±0.49

1.11±0.00

23.89±1.57

43.75±1.37

Persea  americana Mill.  (L)

Lauraceae

-6.02 ± 1.77

2.63±3.01

24.31±0.00

Persea  americana Mill.  (B)

Lauraceae

29.52 ± 0.65

29.87±0.16

44.85±4.52

Anthocleista schweinfurthii Gil.

Loganiaceae

-0.01 ± 0.01

-0.07±0.01

-0.05±0.01

Gosypium barbadense (Mac fedyen) J.B.H.

Malvaceae

8.24 ± 1.60

53.32±1.29

56.98±0.33

0.56±0.39

7.78±0.78

40.14±0.98

Khaya grandifoliola D.C.

Meliaceae

1.51 ± 0.49

60.94±0.66

78.91±1.08

12.50±0.00

53.33±0.00

59.87±0.98

Entada africana (Guill. et Pers.)

Mimosaceae

25.17 ± 0.00

50.34±0.00

82.73±0.49

38.48±0.59

74.03±1.37

100.00±0.00

Ficus exasperata Vahl.

Moraceae

-1.40 ± 0.00

-6.98±3.29

-6.98±0.00

Ficus sp.

Moraceae

-0.01±  0.00

-0.04±0.00

-0.07±0.00

Musa sapientum Lin.

Musaceae

-2.15 ± 2.78

-6.09±0.76

-9.33±1.39

Eucalyptus sp. 

Myrtaceae

50.93±  0.19

78.18±0.94

76.19±0.00

29.77±1.44

65.90±0.00

85.63±0.18

Psidium guayava Lin.

Myrtaceae

2.21 ± 0.49

14.54±0.83

50.47±2.64

7.08±1.77

24.31±0.98

32.92±1.38

Olax subscorpioideae Oliv.

Olacaceae

18.26 ± 0.37

42.86±0.00

44.71±0.00

Cymbopogon citratus ( D.C.) Stapf

Poaceae

-1.25 ± 1.10

-5.71±0.35

-9.66±0.38

Melinis minutiflora P. Bearw

Poaceae

32.67 ± 1.68

86.11±0.93

58.47±0.37

10.56±0.54

61.32±0.72

71.33±0.90

Coffea arabica Lin.

Rubiaceae

39.69 ± 1.12

25.00±1.32

10.05±0.00

Coffea robusta lin.

Rubiaceae

8.27 ± 0.35

19.43±7.62

41.23±1.60

Nauclea latifolia Sm.

Rubiaceae

25.97 ± 1.13

33.41±0.33

43.02±1.61

Citrus aurantifolia Swingle

Rutaceae

1.61 ± 0.18

26.31±0.71

54.59±1.40

11.74±058

20.31±0.59

30.80±4.10

Citrus sinensis L. ( Osbeck )

Rutaceae

15.01±  1.23

54.71±0.52

100.00±0.00

12.57±0.59

24.72±0.98

46.83±2.54

Solanum acaleastrum Dunal

Solanaceae

11.00 ± 1.00

40.23±7.62

28.57±0.00

Trema orientalis Lour.

Ulmaceae

-1.28 ± 1.15

-2.91±0.81

-5.23±4.77

Costus afer Ker .Gawl

Zingiberaceae

7.51 ± 0.00

25.31±0.38

68.16±2.02

0.83±0.00

2.62±0.98

11.61±3.51

Curcuma longa Lin.

Zingiberaceae

53.26 ± 1.95

77.44±0.35

90.36±0.18

91.60±0.00

100.00±0.00

100.00±0.00

1-Initiation mode of lipid peroxidation: Fe (II)-Ascorbate (non-enzymatical lipid peroxidation), Fe (II)-NADPH (enzymatical lipid peroxidation), Data are given as mean ± SD of two experiments;    L = Leaves;      B = Stem bark

Table 2: Inhibition percentages of carbonyl-group formation of different plants extracts

Species

Family

Inhibition Percentage 

Fe(III)-EDTA / H2O2 / ascorbate1

Concentration of plant extracts (µg/ml)

10

100

200

Control silymarine

51.19 ± 2.34

84.18 ± 4.54

99.40 ± 3.56

Eremomastas speciosa (hochst.) Cufod

Acanthaceae

9.52±0.00

31.79±0.00

45.03±0.00

Draceana deisteliana Engl

Agavaceae

5.07±0.35

16.55±0.76

38.27±1.30

Mangifera indica Lin.

Anacardiaceae

69.47±0.27

89.44±0.15

99.21±0.00

Annona senegalensis Pers.

Anonaceae

44.49±1.63

68.59±3.23

85.17±0.82

Enantia chlorantha Oliv.

Anonaceae

20.67±1.44

44.95±0.57

61.62±0.72

Voacanga africana Stapf

Apocynaceae

24.80±1.29

36.34±0.71

76.75±0.59

Xanthosoma sagittifolium L. Schott

Araceae

-0.81±0.30

14.50±1.56

29.58±0.30

Polyscias fulva (Hiern.) Harms.

Araliaceae

5.00±0.45

27.40±1.48

42.89±0.31

Ageratum conyzoides Lin.

Asteraceae

34.13±0.15

35.24±0.33

48.71±0.42

Aspilia africana (Pers.) C.D. Adams

Asteraceae

59.39±3.24

81.63±1.00

86.33±0.81

Bidens pilosa Lin.

Asteraceae

5.81±0.26

15.68±0.12

33.24±1.83

Chrysanthellum americanum (Lin.) Vatke

Asteraceae

61.09±1.90

88.02±0.00

99.58±0.59

Dichrocephala integrifolia (Lin.F ) O.Ktze

Asteraceae

2.74±0.45

19.44±0.27

42.92±0.00

Emilia coccinia (Sims.) G. Don

Asteraceae

14.01±2.59

29.59±3.23

35.22±1.46

Sonchus oleraceus Lin.

Asteraceae

4.46±1.44

4.46±0.00

22.16±2.14

Spilanthes filicaulis (Sch. et Th.) CD. Adams

Asteraceae

5.27±0.30

12.56±1.41

42.41±0.72

Vernonia amygdalina Del.

Asteraceae

27.83±1.44

58.77±1.47

75.27±1.47

Dacryodes edulis (G.Don.) H.Lam

Burseraceae

9.10± 0.00

26.68±3.76

47.20±1.10

Carica papaya Lin.

Caricaceae

32.89±1.32

71.66±0.70

87.20±0.60

Senna alata (Lin.) Link

Cesalpilaceae

70.05±1.16

84.38±0.30

98.94±0.48

Piliostigma thonningii (Sch.) M. Red.  (L)

Cesalpilaceae

61.38±0.68

71.36±0.69

91.81±0.26

Piliostigma thonningii (Sch.) M. Red.  (B)

Cesalpilaceae

34.94±0.40

68.03±1.90

95.33±1.70

Terminalia glaucescens Planch.ex benth.

Combretaceae

22.41±0.00

59.33±0.70

74.58±1.11

Ipomea batatas (Lin.) Lam

Convolvulaceae

35.51±0.99

40.14±0.00

50.97±1.40

Kalonchoe crenata (Andr.) Haw.

Crasulaceae

45.84±0.15

62.13±0.00

69.93±0.45

Alchornea laxiflora (benth.) Pax & K.H.

Euphorbiaceae

58.40±0.40

85.61±0.40

95.60±0.59

Manihot esculenta Crantz

Euphorbiaceae

2.41±0.57

10.69±0.12

29.45±0.15

Crotalaria lachnophora Hochst.ex A.R

Fabaceae

0.43±0.60

21.36±1.07

54.32±0.40

Erythrina senegalensis D.C.

Fabaceae

54.48±0.18

95.43±1.36

98.53±0.00

Harungana madagascariensis Lam.

Hypericaceae

7.18±0.42

17.43±0.30

47.48±0.12

Gladiolus dalenii Van Geel

Iridaceae

-0.19±0.27

3.55±0.15

7.29± 0.57

Occimum Gratissimum Lin.

Labieae

11.99±0.30

25.44±0.71

49.42±0.71

Persea americana Mill.  (L)

Lauraceae

3.47±1.29

17.81±0.33

44.05±0.00

Persea americana Mill.  (B)

Lauraceae

0.00±0.00

16.98±1.42

35.54±1.43

Anthocleista schweinfurthii Gil.

Loganiaceae

37.99±0.30

51.96±0.00

57.57±0.44

Gosypium barbadense (Mac fedyen) J.B.H.

Malvaceae

11.96±1.17

19.47±0.16

40.52±1.01

Khaya grandifoliola D.C.

Meliaceae

19.69±1.62

68.56±2.21

83.09±0.28

 Table 2 (continued): Inhibition percentages of carbonyl-group formation of different plants extracts

Entada africana (Guill. et Pers.)

Mimosaceae

50.00±0.71

71.25±0.83

79.55±0.42

Ficus exasperata Vahl.

Moraceae

17.22±1.01

28.84±0.00

39.56±0.58

Ficus sp.

Moraceae

27.60±1.20

34.71±0.16

51.39±0.60

Musa sapientum Lin.

Musaceae

6.99±0.45

25.42±0.42

34.13±0.42

Eucalyptus sp.  

Myrtaceae

58.48±0.30

29.37±2.93

12.95±0.82

Psidium guayava Lin.

Myrtaceae

17.61±1.32

54.64±0.29

83.72±1.17

Olax subscorpioideae Oliv.

Olacaceae

13.33±0.33

31.66±0.30

39.12±2.76

Cymbopogon citratus ( D.C.) Stapf

poaceae

19.12±0.72

26.82±1.56

40.08±0.30

Melinis minutiflora P. Bearw

Poaceae

5.60±0.40

64.00±1.90

96.92±2.46

Coffea arabica Lin.

Rubiaceae

11.03±0.35

18.03±0.17

36.45±0.00

Coffea robusta Lin.

Rubiaceae

29.37±0.00

45.98±0.48

45.80±0.00

Nauclea latifolia Sm.

Rubiaceae

48.30±0.57

51.89±0.00

70.96±1.54

Citrus aurantifolia Swingle

Rutaceae

14.90±1.00

38.22±3.38

47.77±0.30

Citrus sinensis L. ( Osbeck )

Rutaceae

20.65±1.44

29.86±1.00

45.35±1.44

Solanum acaleastrum Dunal

Solanaceae

2.19±0.51

12.07±1.12

25.23±0.34

Trema orientalis Lour.

Ulmaceae

13.80±0.88

21.63±1.44

36.49±0.89

Costus afer Ker .Gawl

Zingiberaceae

36.00±1.36

49.38±0.47

57.87±0.44

Curcuma longa Lin.

Zingiberaceae

95.31±0.52

99.57 ± 0.00

100.00 ± 0.00

1-Initiation mode of BSA oxidation, Data are given as mean ± SD of two experiments; L = Leaves;      B = Stem bark

Table 3: Computed IC50 (µg/mL) of microsomal lipid oxidation and protein oxidation by some plant extracts. 

Species

Family

Microsomal lipid peroxidation

Protein oxidation

Non-enzymatical

Enzymatical

Control silymarine

5.5 ± 1.98

22.70 ± 3.34

10.43 ± 2.39

Mangifera indica

Anacardiaceae

69.84 ± 0.70

51.70 ± 2.83

3.33±0.22

Annona senegalensis

Annonaceae

NC

NC

16.21±1.05

Enantia chlorantha

Apocynaceae

197.16 ± 3.85

NC

108.28±1.00

Voacanga africana

Apocynaceae

< 10

< 10

79.91±0.90

Aspilia Africana

Asteraceae

NC

53.91 ± 2.26

4.69±1.90

Bidens pilosa

Asteraceae

194.00 ± 9.07

190.91 ± 071

NC

Chrysanthellum americanum

Asteraceae

NC

NC

6.24±0.37

Spilanthes filicaulis

Asteraceae

239.58 ± 8.05

NC

NC

Vernonia amygdalina

Asteraceae

NC

NC

45.31±1.88

Carica papaya

Caricaceae

NC

NC

25.44±1.73

Senna alata

Cesalpiniaceae

23.86 ± 1.03

11.57 ± 0.26

2.83±0.39

Piliostigma thonningii (bark)

Cesalpiniaceae

26.13 ± 2.66

28.46 ± 4.04

23.18±0.93

Piliostigma thonningii (leaves)

Cesalpiniaceae

31.39 ± 9.45

37.14 ± 0.55

4.27±0.37

Terminalia glaucescens

Combretaceae

NC

NC

53.72±0.03

Kalonchoe crenata

Crasulaceae

97.96 ± 0.97

125.25 ± 6.99

17.37±0.00

Alchornea laxiflora

Euphorbiaceae

6.95 ± 4.31

21.64 ± 1.15

6.43 ±0.18

Crotalaria lachnophora

Fabaceae

25.62 ± 0.50

24.79 ± 2.93

189.92 ±7.76

Erythrina senegalensis

Fabaceae

33.11 ± 3.78

31.75 ± 3.65

8.57±0.23

Harungana madagascariensis

Hypericaceae

48.35 ± 1.37

33.28 ± 0.78

NC

Occimum gratissimum

Labieae

77.75 ± 1.44

NC

NC

Anthocleista schweinfurthii

Loganiaceae

NC

NC

67.09±2.72

Gossypium Barbadense

Malvaceae

114.80 ± 3.87

NC

NC

Khaya grandifoliola

Meliaceae

81.70 ± 3.30

102.04 ± 2.52

42.04±0.16

Entada Africana

Mimosaceae

50.67 ± 0.46

18.33 ± 0.76

9.85±0.66

Eucalyptus sp.

Myrtaceae

8.14 ± 0.06

31.33 ± 1.45

NC

Psidium guyava

Myrtaceae

NC

NC

53.20±2.55

Melinis minutiflora

Poaceae

27.42 ± 297

71.29 ± 2.59

54.93±3.25

Nauclea latifolia

Rubiaceae

NC

NC

17.62±1.41

Citrus aurantifolia

Rutaceae

190.48 ± 6.24

NC

NC

Citrus sinensis

Rutaceae

45.01 ± 0.49

NC

NC

Costus afer

Zingiberaceae

151.33 ± 6.42

NC

80.43±0.76

Curcuma longa

Zingiberaceae

8.39 ± 1.25

< 10

< 10

Values are mean ± SD of two experiments
NC: Values not computed because of the low inhibition percentages obtained with the highest dose of extract during the test (< 50%)

Table 4 : Phytochemical composition of some selected active plant extracts

   Classes of compounds

Families &Species

Flavonoids

Triterpens

Sterols

Alcaloids

Polyphenols

Tannins

Anthranoids

Leucoanthocyans

Anacardiaceae

Mangifera indica

+

-

-

-

+

-

-

+

Annonaceae

Annona senegalensis(leaves)

Enantia chlorantha

-

-

-

-

+

-

-

+

+

+

+

+

-

-

-

-

Apocynaceae

Voacanga Africana

-

-

-

+

+

+

-

-

Asteraceae

Aspilia Africana

Chrysanthellum americanum

Vernonia amygdalina

-

+

+

-

-

-

+

+

+

-

-

-

+

+

+

+

+

-

-

-

-

-

-

-

Caricaceae

Carica papaya

-

-

+

-

+

-

-

-

Cesalpiniaceae

Senna alata

Piliostigma thonningii(bark)

Piliostigma thonningii(leaves)

+

+

+

-

-

-

+

+

+

-

-

-

+

+

+

+

+

+

-

-

-

+

+

+

Combretaceae

Terminalia glaucescens

+

-

-

-

+

+

-

+

Crasulaceae

Kalonchoe crenata

-

-

+

-

+

-

-

-

Euphorbiaceae

Alchornea laxiflora

+

-

+

-

+

-

-

-

Fabaceae

Crotalaria lachnophora

Erythrina senegalensis

-

+

-

-

+

-

-

-

+

+

-

-

-

+

-

-

Table 4 (continued): Phytochemical composition of some selected active plant extracts

   Classes of compounds

Families &Species

Flavonoids

Triterpens

Sterols

Alcaloids

Polyphenols

Tannins

Anthranoids

Leucoanthocyans

Hypericaceae

Harungana madagascariensis

+

-

-

-

+

+

-

+

Loganaceae

Anthocleista shweinfurthii

+

-

-

-

+

+

-

-

Meliaceae

Khaya grandifoliola

+

-

-

-

+

+

-

+

Mimosaceae

Entada Africana

+

-

-

-

+

+

-

+

Myrtaceae

Psidium guayava

Eucalyptus sp.

+

+

-

-

+

+

-

-

+

+

-

-

-

-

-

-

Poaceae

Melinis minutiflora

+

-

-

-

+

+

-

-

Rubiaceae

Nauclea latifolia

+

-

-

-

+

+

-

+

Zingiberaceae

Curcuma longa

+

+

-

-

+

+

+

+

 (+) positive test for the class of compounds
(-) Negative test for the class of compounds

Since protein degradation and lipid peroxidation seem to occur by distinct mechanisms (Davies and Goldberg, 1986), it may be suggested that the above 15 plant extracts have strong lipid and protein oxidation inhibitory potency. Therefore, these plant species may be a good source of medicines against diseases in which lipids and proteins oxidation are involved such as toxic hepatitis. Further in vitro and in vivo studies on some of these plant extracts are in progress.

Acknowledgments

This work was partly funded by the International Foundation for Science (IFS) through the Grant N° F/4223-1F. We are grateful to Professor Martinez Gregorio Sanchez (Center for Evaluation and Biological Research, Institute of Pharmacy, Havana University, Cuba) for his useful assistance in the form of literature and advice. We also thank the Chief of Institute of Agricultural Research for Development (IRAD) Centre of Nkolbisson (Yaounde) for plant material collection from the Centre’s experimental garden.

References

  1. Aruoma, O. I. (1998). Free radicals, oxidative stress and antioxidants in human health and disease. JAOCS, 75 (2): 199-212.
  2. Aruoma, O. I. (1997). Extracts as antioxidant prophylactic agents. Inform, 8(12): 1236-1242.
  3. Assane, M., Traore, M., Bassene, E. and Sere, A. (1993). Choleretic effects of Cassia alata linn. in rat. Dakar Med., 38(1): 73-77.
  4. Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principles of dye-binding. Anal. Biochem., 72: 248-254.
  5. Bruneton J. Pharmacognosie : Phytochimie, Plantes Médicinales. Tec & Doc, EM inter. 3ème éd. Paris (1999) 1120p.
  6. Czinnera, E., Hagymasib, K., Blazovicsb, A., Szkea, E. and Lemberkovicsa, E. (2001). The in vitro effect of Helichrysi flos on microsomal lipid peroxidation. J. Ethnopharmacol., 77(1): 31-35.
  7. Davies, K. J. A. and Goldberg, A. L. (1987). Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes.  J. Biol. Chem., 262 (17): 8220-8226.
  8. Dean, R. T., Stocker, R. and Davies, M. J. (1997). Biochemistry and pathology of radical-mediated protein.  Medécine/Pubmed citation. J. Biochem., 324: 1-18.
  9. Faurè, M., Lissi, E.,  Torres, R. and Vidella, L. A. (1990). Antioxidant activities of lignan and flavonoids.  Phytochemistry, 29: 3773-3775.
  10. Fleurentin, J. and Joyeux, M. (1990). Les tests in vivo et in vitro dans l’évaluation des propriétés antihépatotoxiques de substances d’origine naturelle. In Ethnopharmacologie : Sources, méthodes, objectifs. Fleurentin, J, Cabaillon, P, Mazarj, G, Santos J.D et Younos C. (eds). Actes du 1er colloque européen d’Ethnopharmacologie, Metz (France) – ORSTOM, pp.248-269.
  11. Garle, M. J. and Fry, J. R. (1989). Detection of reactive metabolites in vitro.  Toxicology, 54: 101-110.
  12. James, L. P., Mayeux, P. R. and Hinston, J. A. (2003). Acetaminophen-induced hepatotoxicity. Drug Metab. Disposition, 31: 1499-1506.
  13. Joyeux, M., Fleurentin, J., Mortier, F. and Dorfman, P. (1990). Antiradicalar, antilipoperoxidant and hepatoprotective effects of nine plant extracts used in Caribean folk medicine. In Ethnopharmacologie : Sources, méthodes, objectifs. Fleurentin J. Cabaillon P. Mazarj, G. Santos J.D. and Younos C. (eds). Actes du 1er colloque européen d’Ethnopharmacologie- Metz (France) – ORSTOM, pp.365-369.
  14. Kingu, C. S. and Wie, R. (1997). Alcohol dehydrogenase-catalysed reduction of protein carbonyl derivatives.  J. Biochem. Biophys. Methods, 34: 61-68.
  15. Lin, C.C. Tsai, C.C. and Yen, M.H. (1995). The evaluation of hepatoprotective effects of Taiwan folk medicine “Teng-Khia-U”. J. Ethnopharmacol., 45: 113-123.
  16. Markus, B. (1996). Electrochemical behaviour and antioxidant activity of some natural polyphenols. Helv-chim. Acta, 79:1147-1158.
  17. Martinez, G. M., Giuliani, A., Léon-F. O.S., Davison, G.P. and Nunez-Sellés, A. J. (2001). Effect of Mangifera indica L. extract (QF808) on protein and hepatic microsome peroxidation. Phytother. Res. 15(7): 581-585.
  18. Michael, S. L., Pumford, N. R., Mayeux, P. R., Niesman, M. R. and Hinson, J. A. (1999). Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatoxicity  on the formation of reactive oxygen and nitrogen species. Hepatology, 30: 186-195.
  19. Middleton, M. J. R., Chithan, K. and Theoharis, C. T. (2000). The effects of plant flavonoids on mammalian cells : Implications for inflammation, heart disease and cancer. Pharmacol. Rev. 52: 673-751.
  20. Mongbet, L. M. (1975).  La médecine Bamoun. CEPER, Yaoundé.
  21. Moundipa, F. P., Njayou, F. N., Yanditoum, S., Sonke, B. and Mbiapo, T. F. (2001) Medicinal plants used in the Bamoun region (West Cameroon) against jaundice and other liver disorders. Cam. J. Biol. Biochem. Sc. 2: 39-46.
  22. Noguchi, N., Komuro, E., Niki, E. and Willson, R. L. (1994). Action of curcumin as an antioxidant against lipid peroxidation.  Yukagaku, 43(12): 1045-1051.
  23. Pulla, R. A. C. and Lokesh, B. R. (1994). Effect of dietary tumeric (Curcuma longa) on iron-induced lipid peroxidation in the rat lives. Food Chem. Toxicol., 32(3): 279-283.
  24. Recknagel, R. O. (1983). A new direction in the study of the carbon tetrachloride hepatotoxicity. Life Sci., 33: 401-408.
  25. Ruby, A. J., Kuttan, G., Dinesh, B. K., Rajasekharan, K. N. and Kuttan, R. (1995). Anti-tumor and antioxidant activity of natural curcuminoids. Cancer Letters, 94(1): 79-83.
  26. Sanchez, G. M., Re, L., Giuliani, A., Nunez-Sellés, A. J., Davison, G. P. and Léon- F.O.S. (2000). Protective effects of Mangifera indica L. extract, Mangiferin, and selected antioxidants against TPA-induced biomolecule oxidation and peritoneal macrophage activation in mice. Pharmacol. Res. 42(6): 566-573.
  27. Sanogo, R., Germano, M. P., D’Angelo, V., Gugliemo, M. and De Pascuale, R. (1998). Antihepatotoxic properties of Entada africana (Mimosaceae). Phytother. Res., 12: 157-159.
  28. Shenoy, H. P., Somayai, S. N. and Bairy, K. L. (2001). Hepatoprotective effects of Ginkyo biloba against carbon tetrachloride-induced hepatic injury in rats. Ind. J. Pharmacol., 33:260-266.
  29. Sreejayan and Rao M.N.A. (1994). Curcuminoids as potent inhibitors of lipid peroxidation. J. Pharm. and Pharmacol., 46(12): 1013-1016.
  30. Ulf, A. N., Lars-I.O., Gunnar, C. and Fallenius, A. C. B. (1989). Inhibition of lipid peroxidation by spin labels.  J. Biol. Chem., 264(19): 11131-11135.
  31. Virtanen, P., Lassila, V. and Soderstrom, K. O. (1993). Protoberberine alkaloids from Enantia chlorantha therapy of allyl-alcohol and D-galactosamine traumatized rats.  Pathobiology, 61(1):51-56.
  32. Vuletich, J. L. and Osawa, Y. (1998). Chemiluminescence assay for oxidatively modified myoglobin. Anal. Biochem. 265: 375-380.
  33. Wandji, J., Fomum T.Z., Tillequin, F., Seguin, E. and Koch, M. (1994). Two isoflavones from Erythrina senegalensis.  Phytochemistry, 35(1): 245-248.
  34. Wills, E. O. (1987). Evaluation of lipid peroxidation in lipids and biological membranes.  In: In Snell, K. and Mullock, B. (eds). Biochemical Toxicology. A practical approach,IRL Press Oxford. Pp 127-151.

© Copyright 2008 - African. Journal. Traditional, Complementary and Alternative Medicines

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil