search
for
 About Bioline  All Journals  Testimonials  Membership  News


Tropical Journal of Pharmaceutical Research
Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
ISSN: 1596-5996
EISSN: 1596-5996
Vol. 13, No. 2, 2014, pp. 229-234
Bioline Code: pr14033
Full paper language: English
Document type: Research Article
Document available free of charge

Tropical Journal of Pharmaceutical Research, Vol. 13, No. 2, 2014, pp. 229-234

 en Polysaccharides from Portulaca oleracea check for this species in other resources L Improve Exercise Endurance and Decrease Oxidative Stress in Forced Swimming Mice
Xiang, Chen; Zhang, Lan; Xaowei, Zheng & Xiaojuan, Lou

Abstract

Purpose: To explore the effects of polysaccharides from Portulaca oleracea check for this species in other resources L (POP) on exercise endurance and oxidative stress in forced-swimming mice.
Methods: Forty-eight mice were divided into four groups of twelve animals each. All treatments were administered orally and daily for 28 days. Group A received isotonic saline solution (50 ml/kg bodyweight) as control group; B, C and D groups received 100, 200 and 400 mg/kg body wt. of POP as treatment groups, respectively. After the final treatment with POP, the mice were subjected to swimming to exhaustion and the exhaustive swimming time, blood lactic acid (BLA), blood glucose, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were measured.
Results: The exhaustive swimming time of the POP-treated groups (967.3 ± 79.2, 1234.8 ± 97.6 and 1314.3 ± 107.3 s) was significantly longer than that of the control group (513.6 ± 41.2 s) (p < 0.05). After the exhaustive swimming exercise, BLA levels of the POP-treated groups (8.63 ± 0.91, 8.04 ± 0.86 and 7.51 ± 0.78 mmol/L) were significantly lower than that of the control group (11.39 ± 1.17 mmol/L) (p < 0.05). MDA levels of the POP-treated groups (2.69 ± 0.21, 2.41 ± 0.17 and 2.37 ± 0.23 U/mg.pro) were significantly lower than that of the control group (3.21 ± 0.29 U/mg.pro) (p < 0.05). On the other hand, blood glucose levels of the POP-treated groups (5.47 ± 0.48, 5.74 ± 0.57 and 6.04 ± 0.51 mmol/L) were significantly higher than that of the control group (4.89 ± 0.32 mmol/L) (p < 0.05). SOD levels of the POP-treated groups (124.36 ± 14.87, 136.39±13.48 and 145.87 ± 17.39 U/mg.pro) were significantly higher than that of the control group (108.41 ± 11.63 U/mg.pro) (p < 0.05). GPx levels of the POPtreated groups (68.24 ± 4.68, 71.33 ± 5.29 and 72.64 ± 5.99 U/mg.pro) were significantly higher than that of the control group (53.17 ± 5.24 U/mg.pro) (p < 0.05). CAT levels of the POP-treated groups (23.57 ± 1.71, 24.28 ± 2.14 and 26.72 ± 2.21 U/mg.pro) were significantly higher than that of the control group (19.48 ± 2.03 U/mg.pro) (p < 0.05).
Conclusion: This study provides compelling evidence that POP can improve exercise endurance and decrease oxidative stress in forced swimming mice.

Keywords
Polysaccharides; Portulaca oleracea L.; Oxidative stress; Swimming; Exercise endurance

 
© Copyright 2014 - Tropical Journal of Pharmaceutical Research
Alternative site location: http://www.tjpr.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil