search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 13, No. 1, 2010
Bioline Code: ej10005
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 13, No. 1, 2010

 en Genotypic variation in morphology and freezing resistance of Eucalyptus globulus check for this species in other resources seedlings subjected to drought hardening in nursery
Coopman, R.E.; Escobar, R.; Corcuera, L.J. & Bravo, L.A.

Abstract

Eucalyptus globulus check for this species in other resources Labill is one of the most planted species in Chile, because of its fast growth and superior pulp qualities. Nevertheless, the incidence of drought and frost damage immediately after planting is frequent. The purpose of this work was to study the effect of drought hardening on frost resistance and on variations in morphological traits that may increase drought resistance at nursery phase in four genotypes of E. globulus Labill. Drought hardening treatments consisted in induced water stress by watering restriction, until pre-dawn stem xylem water potentials (Ψpd) reached -0.2, -1.8 and -2.6 MPa. Two water stress-rewatering cycles were applied during 54 days of hardening. Plant and root biomasses were affected by the interaction of drought hardening and genotypes. The rest of morphological and alometrical traits were affected independently by drought or genotype. Plant height, leaf area, specific leaf area (SLA), stem, and leaf biomasses decreased with drought hardening, while collar diameter was not affected. Genotypes responded differentially to drought hardening in plant height, leaf area, SLA, and stem, and leaf biomasses. Ice nucleation temperature (INT), and freezing temperatures (FRT), and 50% freezing damage index of leaves (LT50) were affected by the interaction between drought hardening and genotypes. EG-13, EG-23 and EG-22 genotypes became freezing tolerant with drought hardening (-2.6 MPa). Additionally, EG-14 genotype increased its freezing resistance at -1.8 MPa. Therefore, freezing resistance levels and mechanism depend on genotype and drought hardening treatment. The success in tree breeding by genetic selection should be facilitated by improved understanding of the physiology of stress resistance development and survival during water supply limitations. The knowledge of morphological and freezing resistance dependency on the interaction between genotype and drought hardening may be useful nursery management information to improve plantation success.

Keywords
biomass allocation, cross hardening, genotypic selection, planting stock quality, water stress

 
© Copyright 2010 - Pontificia Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil