search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 10, No. 1, 2007, pp. 1-11
Bioline Code: ej07004
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 10, No. 1, 2007, pp. 1-11

 en DNA removal from a purification process of recombinant hepatitis B surface antigen
Iznaga, Alejandro Beldarraín; Frontera, Mayda Candelario; Uramis, Javier Rodríguez; González, José Blas Tejera; Parra, Yodelis Calvo & González, Yoel Madruga

Abstract

We studied the capacity of an API-rHBsAg purification process to eliminate DNA contamination from yeast-host cell. Firstly, was demonstrated consistency of manufacturing purification process to remove DNA, from (3.9 ± 1.9)108 pg/dose in starting material to (3.4 ± 1.6) pg/dose, equivalent to 8.2 log in Active Pharmaceutical Ingredient (API), measuring DNA quantity in several unit operations along manufacturing process for twenty batches, five consecutive in 2000, 2001, 2003 and 2005. These values for API, lower than 10 pg/dose, accomplish current WHO requirements for Hepatitis B vaccines obtaining by recombinant DNA technology (WHO, 1989; European Pharmacopoeia, 2001a). The main removal factor for manufacturing process, equivalent to 6.4-log, was reached in negative anion-exchange chromatography. Then, the capacity of immunoaffinity chromatography and positive anion-exchange chromatography to remove chromosomal DNA purified from yeast-host cell was assessed using a scaled-down chromatographic process which was shown to yield product meeting purity criteria set for the manufacturing process. Log10 reductions for DNA through the immunoaffinity chromatography and positive anion-exchange chromatography were 7.3 ± 0.1, and 5.8 ± 0.1 respectively. Overall, these studies indicate that total DNA clearance factor for API-rHBsAg manufacturing process was 19.4 log, 2.4 times higher than the real DNA contamination, indicating that API-rHBsAg manufacturing as described here have sufficient DNA reducing capacity to achieved a high margin of DNA safety.

Keywords
DNA-clearance factor, process characterization, rHBsAg purification process, spiking experiments.

 
© Copyright 2007 - Pontificia Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil