Background: Genetic and epigenetic changes (DNA methylation) were examined in the tissue-culture propagated interspecific potato somatic hybrids between dihaploid
Solanum tuberosum
and
S. pinnatisectum
. Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) were applied to detect the genetic and epigenetic changes, respectively in the somatic hybrids mother plants (1
st cycle) and their regenerants (30
th cycles sub-cultured).
Results: To detect genetic changes, eight AFLP primer combinations yielded a total of 329 scorable bands of which 49 bands were polymorphic in both mother plants and regenerants. None of the scorable bands were observed in term of loss of original band of mother plant or gain of novel band in their regenerants. AFLP profiles and their cluster analysis based on the Jaccard’s similarity coefficient revealed 100% genetic similarity among the mother plant and their regenerants. On the other hand, to analyze epigenetic changes, eight MSAP primer pair combinations detected a few DNA methylation patterns in the mother plants (0 to 3.4%) and their regenerants (3.2 to 8.5%). Out of total 2320 MSAP sites in the mother plants, 2287 (98.6%) unmethylated, 21 (0.9%) fully methylated and 12 (0.5%) hemi-methylated, and out of total 2494 MSAP sites in their regenerants, 2357 (94.5%) unmethylated, 79 (3.1%) fully methylated and 58 (2.3%) hemi-methylated sites were amplified.
Conclusion: The study concluded that no genetic variations were observed among the somatic hybrids mother plants and their regenerants by eight AFLP markers. However, minimum epigenetic variations among the samples were detected ranged from 0 to 3.4% (mother plants) and 3.2 to 8.5% (regenerants) during the tissue culture process.